TOPS-10/TOPS-20
COBOL-74 Language Manual

AA-5059B-TK, AD-5059B-T1

October 1985

This manual reflects the software of Version 12C of the
COBOL-74 compiler (CBL74) and the object-time system
(C740TS), and Version 4C of SORT.

This manual updates the TOPS-10/TOPS-20 COBOL-74
Language Manual, order number AA-5059B-TK.

OPERATING SYSTEM: TOPS-10 V7.01
TOPS-20 V4.1

SOFTWARE: COBOL-74 V12C
C740TS vi12C

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, lllinois 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734-4915

digital equipment corporation e marlboro. massachusetts

First Printing, January 1979
Updated, January 1980
Revised, August 1981
Updated, October 1985

© Digital Equipment Corporation 1979, 1981, 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

Eﬂaﬂnanm

DEC MASSBUS RSX

DECmate PDP RT
DECsystem-10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX

DECUS Q-BUS VMS

DECwriter Rainbow vT

DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION TO COBOL-74 LANGUAGE
1'1 SYMBOLS AND TERMS e o o & o 6 e e e e o o o o o 1-1
l-l-l Symbols e o o & o e e o & o e o o o ¢ o o o o+ o 1-1
1.1.1.1 Undetline e e o e & ¢ o o e o e & o o o o+ s o 1-2
1.1.1.2 Brackets and Braces . « « « o ¢ o o o s o o o 1=2
lola1.3 The Ellipsis e o o o e e & o e e o e s+ & o & o 1_2
1.1.2 COBOL Terms o o o o e ¢ o & o e e e & o o o+ o 1_3
l¢2 ELEMENTS OF COBOL LANGUAGE e o o6 o e e o o e o o o 1_3
l.2.1 Program StructuUre .« « « o+ s o o o o« o o o o o o 1=3
102.2 COBOL-74 Character Set ¢« ¢ 4 ¢ o o o o o o s e o 1-4
112.3 Words e e o6 o o e e e e e o s o o o e e+ o e+ o o 1-5
1.2.3.1 RESerVed Words e o o & o e e o o & o s s o s+ o 1-5
1.2.3.2 User-Defined Words « « « ¢« ¢ ¢« o o ¢ o » o & o 1=9
1.2.4 Literals e e e 8 6 8 e e e s+ & o o o o 2 s o o l—lﬂ
1.2.401 Numeric Litetal e e & o & o s e o s o s o+ o l-lg
1.2.4.2 Alphanumeric Literals . « « « ¢« ¢ o o ¢ o o 1-11
1'2.5 Separatots » o e e & & e e ¢ @ o & o s+ e+ o 1_12
1.3 SOURCE PROGRAM FORMAT e o s o o o o o s o o s s 1-13
lo3.l Card—Type Fotmat e o & o o o o o o o o o o o o 1-14
1.3.2 Terminal-Type Format « « « « o o ¢ « o o o » « 1=15
10302.1 With Line Numbers e ¢ e o o e & s e s o s o 1—16
1.3.2.2 Without Line NumberS e & e ¢ o o e s e o o o 1—17
1.4 THE COBOL LIBRARY FACILITY « ¢« + ¢ o ¢ s o o o o 1-19
1.4.1 The COPY Statement e o o e e e o & o o o 2 o+ o 1-19

CHAPTER 2 THE IDENTIFICATION DIVISION

CHAPTER 3 THE ENVIRONMENT DIVISION
3.1 ENVIRONMENT DIVISION CLAUSE FORMATS . « « o« o o o 3-2
3.1.1 Configuration Section . .+ ¢« ¢ ¢ ¢ ¢ o o o o o« o 3-2
3.1.2 SOURCE-COMPUTER e e & o e e o o & & 2 o o o+ o o 3—3
3.1.3 OBJECT-COMPUTER e o e o e e o o o o * ¢ o+ o o* o 3_4
3.1.4 SPECIAL-NAMES e o & & ® 6 & e e o o & o o o+ o oo 3—6
3-1.5 Input—output SeCtion e o o e 6 o o o o o o e e o 3—9
3.1-6 FILE~CONTROL « &2 ¢ o ¢ ¢ o o ¢ o ¢ o o o o o o 3'1“
3.1.7 SELECT e o e & e ® ® e e e o o 6 e o & o o o o 3—14
3.1-8 RESERVE e & e e & o o e ¢ e & o ¢ o 0+ o o s o 3—16
3.1.9 ORGANIZATION e o e e 8 6 4 & 6 s o e o o o e o 3‘17
3.1.1“ ACCESS MODE e o o e e 6 e o o e o o o s s o o 3-19
3.1.11 RECORD KEY . e o6 o 9 e & e e o o o o e o o o 3—29
3.1.12 ALTERNATE RECORD KEY ¢ ¢« ¢ o o o o s o o o o o 3-21
3.1.13 RELATIVE KEY e o o e ® + e o o o e o e s o+ o o 3-22
3.1.14 RECORDING MODE/DENSITY/PARITY . . « « « « o - 3-23
3.1.15 FILE STATUS e o o & e 6 6 e » e s o o s s e o 3-27
3.1.16 I-0-CONTROL ® e o e e o e & o 6 6 o & s o e+ o 3-37

CHAPTER 4 THE DATA DIVISION
4'1 FILE SECTION ® @ o o e e & e o & o o o o o e o o o 4-2
4.1.1 Record Descriptions . « ¢« o ¢ ¢ o o o o o o o o« 4-2
4.1.2 Elementary Items and Group Items . « « « » « » . 4-3
4.1.3 Level Numbers e e o & o o o o e s e s s o °o o o 4-3
4.2 SCHEMA SECTION ¢ e o e o e o o e o 6 o o s o o+ o+ o 4-4

iii October 1985

.
.
.
.
.
.
3
.
.
.
.
.
.
.
.
3
3
.

e & o @ 0 ® o 6 o & o o s & s o o ¢
s & o o 3 o @ & © o * o & o o o o
o O
. o Sed 2% o ® o o e & o v o o
z o - -~
O o ¢ X Q) ¢ o ¢ o o o & o
Z e 6] 0 By
OB o ¢ eQBI~ o o ¢ ¢ ¢ o ¢ o o
= O)
R ¢ ol oD o o 0 0 o 0 . o
O w M < O w
5] O *QQleH) o s o s e Z o o
nn=z Q, Z00=z2 -
Vo290 <« Q. o O oL ¢ O
Z2LHOXZ Z~d QEEX B £
OEH OUVOME ¢ 0O ¢ «a
HOOEBHWHZHOZ oz0 (o] Z
HEROOBHUMNOBOL IR «O « | Ky
g nnwmE L QQOMHME OX (o]
(S nLoL>Q A B0 A
HOm @ = o1 ot] (D) G]
ZZUBELEO VDR LCE OO0 KD
DHLXEWHD ~0AQF MZO0O0 4
EXNNMOOINLC 1O ACHREAQL
SEZMECAHEEONOOR IIXEND>
OO0OHEK DO
OO OunA
-
—~ HANMEOS 00~

. e o 8 & o o o o & o ¢
NIPUNOVOSROATAAAATNATNRTAAATITAAIOD
e ® o 8 & 6 ¢ o 0 0 s o 0 s s e 0 e »

PSSP

4-27
4-31
4-33
4-34
4-36
4-37
4-39
4-40
4-42
4-56
4-58
4-60
4-62
4-64
4-70
4-72
4-74
4-75
4-76
4-78
4-81
4-82
4-83
4-85
4-86
4-87
4-88

.4-88.1

.
.
3
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
.
.
.
.
.
.

.
.
3
.
.
3
.
.
L
.
.
.
.
.
.
.
.
.
.
3
.
.
.
.
.
.
.
.

. .
. .
.
. .
. .
. .
. .
. .
o o
. L]
. .
. .
3 .
. .
. .
o o
3 .
. .
.
.
.
.
.
.
.
.
.

.
.

Condition-Name (level-88)
Data-Name/FILLER .

JUSTIFIED

.
3
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
O

.

3
.
.

3
.
3
.
.
.
.

.
.
.
.
.
.
.
.
.
.
3
.
.
3
L]
.
.
.
.
.
.
.
.

O
)
.
.
.
3
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.

.
3
3
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.

.
L]
.
.
.
.
L]
.
.
.
.
.
.
.
.
.
.

.
.
.
.
O
)
.
.
.

.
.
.
.
.
.
.
.
.
3
.

IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

DATA DESCRIPTION ENTRY

BLANK WHEN ZERO
LINE NUMBER
NEXT GROUP .

USAGE
RESET

VALUE
GROUP INDICATE .

COLUMN NUMBER

Report Description (RD)
PAGE LIMIT .)
Report Group Description .

RENAMES (level-66)

SIGN .
SYNCHRONIZED .

Level-Number

OCCURS
PICTURE
REDEFINES
CODE .
CONTROL
SOURCE
SUM

TYPE

9.12
9.13
9.14
9,15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9,23
9.24
9.25
9.26
9,27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38

@ & o ® o o e 8 e % & s & 3 8 s 6 s 6 0 & 8 8 s s e o
Y S A I IS IS SIS IQASIY

THE PROCEDURE DIVISION

CHAPTER 5

NANNLLLHOOO0
L e
WO W WL NW
L] . Ll L)

® o o o & o s o o

e & o & o 2 e o ¢ & s s o

S

e o s o

3
.
.
.
.

*® e * e o o

.
.
)
.
.

. O . a .
. . L] . .
.
.
.
. . . .
. . . .
. . . .
L]
.] . o o
. .

.
.
.
.
.
.
.

Formation and Evaluation Rules

CONDITIONAL EXPRESSIONS

.
.
.
.
.
.
.
.
L]

.
.
.

Formation of a Relation-Condition

Statements
Paragraphs .
Sections

Sentences
Arithmetic Operators .

ARITHMETIC EXPRESSIONS
Relation Condition

SYNTACTIC FORMAT OF THE PROCEDURE DIVISION ,
SEQUENCE OF EXECUTION
SEGMENTATION AND SECTION-NAME PRIORITY NUMBER

L] L] . . L] L]
A AN SN DN
e 8 o & ¢ % & 8 ¢ s e s o

WO NWLWWONDWWINWD NN

October 1985

iv

888999@”09
| LR L B N K e K|
[TalTaTolTolNTo o R N N N

N wn

.
.
.
.
.
3
.
3
.
.
.
.
.
.
.
.

.
.
3
.
L]
.
.
3
3
3
L]
3
.
3

.
.
L]
.
.
.
]
.
.
)
.
.
.
3

(o]

o o

£

n v

coxE

[=1 oom

] ot ot B4

e @ o o o & o o o o o o o L)Ly

+ o ot (Y]

@ ° o s o o s o et s e o eTT L
T =3 =

e o) o o o o o 2T e s e e 0OO0M

=3 O oom

. QD o e o o s o o oW1 =
[B E] c QT C

s Bt ¢ 0O ¢ o o s O o e+ OO

I} ot e [} S et B

e D D o4 o o o o T oot oRoltI

et o =z o Qo=
. St e o o s O et o O E et

0o c oc T ocoooAQ

Nt E 0O o et O o8 ol OEE

LMS O O PV O B =

OV C . ¢ e P o0 e WTT L

P EC 123 Q T ot SO0

T30 *+0 ¢ P CT o0 —~ oSO

Nz 2 < w oo o®n oo~ 0O

[—~ cOOOD O e L D>DVAW

QUHW OO HE O NWOoOMOE®

o000 u0ug Q c P Z0«
—“ o RO ETCOTCT [&]

- oo oOMH M ~CT W

T OO H AU ZWH LW PO T Z

cunnooLImm|l O~ OLQ S 0O

O it O v v O0C P

- MM OBHIID oY oY o ©

PO OO O MUl Zerd © O el O

oL £ PEVECLOD>O
S EEVRNNNOOA M MO @B O

vooNnNOVLOLCTOCO~EQNZ

xOUSKREERBCRM DR EQO

i O co0O0Qx=E

(&) © 6] HAERO<E

[o]

©

~ N 1 l
1112222233445678

® e o o e 6 o o o o o % o 0 s o
OOV OLODOODW WD
® 8 o o o 6 o ° o * o * 0 o 0 ¢ o

DWW ULWYOLWONWNNODYOOLW

NS~ OoOOASANITN~ONMITN~OONRATOUNOAEBRAASOANMONOABRANNOOALNOR AN
HeE A AAANNNNNNMMO OO OO IIIIONNNOOO00OOoOoONaRE®R
L L O L O s B R e e
N EOLLDOOOLOODDOLOLDOODODODODODODDODOODODVLOODOLLLY L]
0w wnwnun
1)
..‘.N.I’.'.........‘I..'..Il..'..0.0.....0...O‘
(o]
.‘.'I.’...'.........’....‘.........."'.......'
34
o o o ok o % o & o o o e & O o . 8 8 s O s % s S e O & % e s T S s s s s s o0t s s s o0 0
£
...'U'..‘..........'......'..........'...'.....
o
@ ¢ ¢ oF o o o 6 ¢ ¢ s 6 6 ® e ° & 6 e * & O s s 0 T e * o s 0 s e s e " 0 s e o o
O
e o @ o0) o ¢ o ¢ o ¢ o © 8 © 8 O & o & & o O s & s 6 e O o s s O s 0 9t s * o s 2 s s+ 00
o o o a0) o @ o o o ¢ o + o * o & o e & & s 0 o s 2 S s 0t o * s s o s 2 s st e s 0 s o o o
[l
o.OoT0000000000000000oc.ooouobouoonoou.oooooooo
2]
QOO'M ® o ® & © o O & ° & & e % o 5 2 ° 9 * & % o ° s * o O e & o 0+ s * o 0 2 2 2 * o+ o
> N0
¢ o o of4Ft © o o o * & o o o e e o & s * e e s 0 s ° s * o s 2 0 2 % 3 s s % st s s s s e 0
H g
@ o o SfY/S ® e o & o & * o e s ° s s e & s C s e e T s % s s 0 o 0t et e 0 s e oo
< g
e o o o O * o o o ¢ 4 ® o ¢ o * s * e & 3 e s 6 & * 9 % s * s T s s e 2 s % s s s s 0 s o o
Z b
.] @ ¢ ® o © 6 % & o & & & © & O & O & % e *t & 6 s 6 & % e e o * s 0 s ot s S e o0 o
cO m
ooOIERoooooooooooooooooonocoooooo'ooao‘oooooooo
~ 0 m
e QWAL ¢ o ¢ o ¢ o 2 o ® 0 0 o s 2 s & s s e s st s s s s e s s s s s 0 s s s s s s o0
o oW
et O D IZ e e 6 e st s & o s e 8 s & s % e s o s s 0 s s s o s s e e 0 s s s s s s oo
PO O
e DL ZEI - o o © s o o o o & s & s o o & 4 & & 0 s o s 2 s s s s 2 s o s s s s s 0 s 04 e
OO0OHOW
e MO 4 ® o o o o o % ¢ o o & o W o o & o + e * o % e o 4 s e 2 s o e s s s s s s e o
AxLZZ > <
IR OO o ¢ & o o & ¢ 5 ¢ s o o oY, © o ¢ o & s & s 2 * O 3 O 4 0 2 s 0 s 2 s 0 0 o o
A AaHA (&) 3]
e ZEKwE o o o o o s . s o o 00O o] ¢ o e o1 o e o e o o o v sEHNE D
DONELH [[« T 5 B O E @ 23] vang =2
COHMXZXE o ed BRI E L3 - L * L O s e cNZZEII o o LM Z H
gugHDL @& (AEaODEHJIO0MM KO HEME H O <LHEXHOD B ZXpHBEX
O=ZAM MIONARNAUANHMOAXHBERRE L0 MBZRARCDXES BHXAHBALZOB
MO OLEMUOUARIJZOELTNDHEHHDEZ HANESIHEKELIHBEICHECOxNA ML
Nos HOLANLCCLIORHHZZXXAEARORZZNODAMMMNHOMNNERNOBBEBDDMEXZ
MTT“mmAAACCCCDDDEEEEFGGIIIMMMOPRRRRRSSSSSSSSTTU
> 0o
QS~NMNnNONOOARANMNO~OOAR--NMINO-OONED
12 12345678911111111112222222222333333333344

* 6 5 & + 2 & o o 4 s 0 % o s e »
667899
@ o 6 6 o @ 6 & 6 6 6 6 & 6 & 6 8 ° 6 & 6 & 6 0 6 ° 6 & & & 5 & & 6 & & 0 . s 0 s 2 o 2 0

DOV OODDODODLODOVDODODVOOVDOLODDOODOLODOODD NN onnn

October 1985

5.9-42 USE ¢ e e e o e e s 0 e e & e o 2 s o 2 e o+ o 5-113
509.43 WRITE ® 6 e o 2 6 a2 e e 8 & e o s e s e+ o+ o+ o 5‘116

CHAPTER 6 COMPILING AND LOADING COBOL-74 PROGRAMS
6.1 COBOL-74 COMPILER COMMAND STRING ., . + » « &+ o o o 6-1
6.2 LOADING COBOL_74 PROGRAMS 3 * 6-4
6.3 RUNNING COBOL-74 PROGRAMS . . « & « o o« o o« o o« » 6-4

CHAPTER 7 COBOL UTILITY PROGRAMS
7.1 ISAM INDEXED-SEQUENTIAL FILE MAINTENANCE PROGRAM 7-2
7.1.1 Building an Indexed-Sequential File . . . « « o 7-4
7.1.2 Maintaining an Indexed-Sequential File 7-9
7.1.3 Packing an Indexed—Sequential File e e e s o s 1-12
7.1.4 Ignoring Errors . . . e ¢ o o 1-13
7.1.5 Reading and Writlng Magnetlc Tape Labels e o o 1-14
7.1.6 Renaming an Indexed-Sequential File 7-16
7.1.7 Checking an Indexed-Sequential File 7-17
7.1.8 Producing Blocking Data with IsAM ., 7-18
7-1'9 Indlrect Commands e« o o ® o o & e o o o 7-19
7.1.10 Using Indexed-Sequential Files e e s s o o o o 1-28
7.2 LIBARY SOURCE LIBRARY MAINTENANCE PROGRAM ., . 7-22
7.2.1 Library File Format 3) . 3 7—22
7.2.2 Invoking the Library Utility . . . ¢« « « ¢« « «» 7-22
7.2.3 Command String Defaults . ¢« ¢ « o o o o o o« o 1-23
7.2.4 LIBARY SWitches 0 3 . . . e o 7-24
7.2.5 Running LIBARY . .« ¢ & ¢ ¢ « o o o o o s o o o 1=25
7.2.6 LIBARY Commands 3 3 . . e o 7-25
7.2.6.1 Group Mode CommandsS . « ¢ « o o « o o o o o 1-25
7.2.6,2 LIBRARY-Directing Commands . . « « « o « « » 17-26
7.2.6.3 Example of Command Usage « « « o o o o o o o 1-27
7.3 COBDDT PROGRAM FOR DEBUGGING COBOL PROGRAMS . 7-29
7.4 LOADING AND STARTING COBDDT . o o o o o o o o o 1-29
7.5 COBDDT COMMANDS & &« & o « o o o o o o o o o o o 1-30
7.5.1 Obtaining Histograms of Program Behavior . . . 7-39
7.5.1.1 Initializing the Histogram Table 7-39
7.5.1.2 Starting the Histogram o o e o o o o e o o o 7-4ﬂ
7.5.1.3 Stopping the Histogram + &« &« &« o« o 7-40
7.5.1.4 Obtaining Histogram Listing « « . . 7-41
7.5.1.5 Using the Histogram Feature+ « o« o 7-43
7.6 RERUN PROGRAM TO RESTART COBOL PROGRAMS . . . 7-44
7.6'1 operating RERUN . 3 3 7‘44
7.6.2 Examples of Using RERUN e o o s o s 4 o e o o 1-45

CHAPTER 8 FILE FORMATS
8.1 RECORDING MODES . . 0 * . 3 . 8_1
8-101 ASCII Recording MOde * e e e o o . e o & o o o o 8“1
8.1.2 SIXBIT Recotding Mode e e e e e e e e 6 & ¢ o o 8—2
8-1.3 EBCDIC ReCOrding MOdev . . 3 - . 8-2
8.1.4 BINARY Recording Mode e @ o e o & e o e o o o o 8_3
8.2 FILE FORMATS e & e o 8 6 e e e o o o o6 & e o s e o 8-3
8.2.1 Fixed-Length ASCII . e o e 6 o & o e s o e o o o 8_4
8.2.2 Variable—Length ASCII . o o ¢ 6 o & & o o e s o 8—6
8.2.3 Fixed-Length SIxBIT . . . e o . 0 . e o o . N 8-801
8.2'4 Variable-Length SIXBIT . . . - e o o o o o e o S-Iﬂ
8.2.5 EBCDIC File FormatsS . ¢ « o 2 2 o o ¢ o « o o+ B8-12
8.2.6 BINARY File Formats) . . o o e o o o o o 8-19
8-2.6.1 COBOL ASCII Mixed-MOde Binary 8-20
8.2,6.2 COBOL SIXBIT Mixed-Mode Binary . « ¢« « « « o 8-21

vi October 1915

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

.

€0 0 00 00 W O W
ALK WN

.« o e o o o o
* o & o o o o
Y UL b o W

VYOOV OOVLOVLOOWVY VY
.
s b b b b b

[
=

11

11.1
11.1.1
11.1.2
11.2
1l1l.2.1
11.2.1.1
11.2.1.2
11.2.2
ll. 2.3
11.2.4
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3,6

12

12,1
12.2

13

13.1

13.1.1
13.1.2
13.1.3
13.1.4

COBOL EBCDIC Mixed—-Mode Binary
FILE ORGANIZATION AND ACCESS . . .
SEQUENTIAL FILES . « ¢ s o o o o o
RELATIVE FILES

Sequential Access of Relative Fil
Random Access of Relative Files
Dynamic Access of Relative Files
INDEXED-SEQUENTIAL FILES + ¢« « o+ &
Data File . ¢« ¢« o o ¢ o o o o
Index File . L] L] L] * L] . . . L] *

e o o o o mo ¢ o o
. L] L] .
. . * . L] L] . * L] L]

e o ¢ o o

SIMULTANEOUS UPDATE

PROGRAMMING CONSIDERATIONS .
The OPEN Statement . . . &
The RETAIN Statement . . .
The FREE Statement . . . &
Accessing Sequential Files

Basic Reading« &
Basic Writing . . .+ « &
Basic Updating
Access to Sequential F11e Strat
Accessing Relative Files . . « . &
Accessing Indexed-Sequential Files .

* & o 6 o o o o
e o 6 o o o o
e o & o o o o

De o o ¢ o o o o

gile

@ e o o ¢ o o ¢ o

.

.
S

.

REPORT WRITER

e & o ® o & o o o o

® o o o & o o o o o

e ¢ o & o o o o o ®
e ¢ o o o o o o o o
e ¢ o & 6 o o o o @
o]
LU UL U
N
v

e o o o @ o * o o o o
¢ o o o o o * o o o o

PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS

PROGRAM SEGMENTS « ¢ ¢ « o ¢ o o o o
Section-Names and Segment Numbers
Examples « « ¢ o o ¢ o o o o o o

S UB PROGRAMS . . . * L] L] L]
Inter-Program Communication

The Calling Program . . .

The Called Subprogram . .
Loading a Subprogram Structure
Object Libraries and Searches
Examples + « o« ¢ ¢ o o o o o

OVERLAYS ¢ ¢« ¢ ¢ ¢ ¢ o o o &
When to Use Overlays . . .
Overlayable COBOL Programs
Defining Overlays . . .
The /SPACE Switch to LINK
The CANCEL Statement . . .
Examples . + ¢ o o o ¢ o o

e ® e & o @ o & o o o o o o

e @ o @ o o o 6 o 8 o o o o o

@ 6 e ® @ 6 o 0 o & o s s o s o o
@ ¢ o o o ® @ © o © o o o o o s

e o o o o o o
o o & ¢ o & o o

CALLING NON-COBOL SUBPROGRAMS

CALLING FORTRAN SUBPROGRAMS . . . « &+ &
CALLING MACRO SUBPROGRAMS . « . « « « &

e @ o 0 o o ¢ o o & o & o ° g o o

IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS

HOW TO PROCEED WITH PROGRAM OPTIMIZATION
Where to Begin L] L] L] * > L] . L] * * . *
What Tools Are Available
What Method or Procedure to Use
Evaluating Performance

e o
* .
o o

vii

e o & o &

11-1
11-1
11-2
11-3
11-4
11-4.1
11-5
11-6
11-6
11-7
11-8
11-8
11-8
11-9
11-11
11-13
11-14

e @ o 6 o & o ® o & o o o o ¢ o o
® ® o & e 8 o6 ® & O o & 0 o ¢ o o
® ®o & o & e © & o & o s o o s v &

13-3
13-3
13-3
13-4
13-5

o o o o o
* o o *
e o o o o

October 1985

13.1.5
13.2

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

Mgy

el

R R e R lo R Ko |
® 6 e & s ° o

Db wWwwwwNn

NN =
[] L]

N

w N = W=

>

- N

N =

Documentation . . .
LISTING THE TOOLs . .
COBDDT . . * . .
The ENTRIES Column

The CPU Column . .
ELAPSED Column . .
OVERHEAD
USING THE CORRECT DATA
DISPLAY Data Types .
EBCDIC . « ¢ o o o &«
ASCII . &« « o« & .
SIXBIT o+ o o o« o .
COMPUTATIONAL . .
DATA EFFICIENCIES .
Counter, Indexes, Su

.
.
.
.

o

e (Do ¢ ¢ o o ¢ rlo o ¢ o ¢ o o
Q o]

e M e ¢ o o o & IPe ¢ o o o o o
[c]

i

cr

o S (T s e 5 e 3 ¢re s s o & & & 8 8 &+ 8 % & s e @

p
File Storage
Blocking Data . . o« o
DATA DIVISION Space Restric

EFFICIENT CODING CONVENTIONS
Alignment . « + & « o o &
Usage of Subscripts . . .
Incrementing Counters . .
The PERFORM Statement . .
Use of the INSPECT Statemen
Data Movement L) L] * . L] L]
Ordering Statements . . .
Asking the Correct Question

DIFFERENCES BETWEEN COBOL-68 AND

COBOL RESERVED WORDS

i

® o 6 o o o o o 8 O s o ¢ o & & ° o s 2 & o % o s o o

n

® o & ¢ ® o & o ° [N e o & o * o & o & o o s 0 o & o o

® 8 ® 8 ¢ 8 ¢ o ¢ e o & ¢ & & o o

& & & o % e & o & o 6 & ¥ & " 9 & 2 s o 0 0 ° o o a0
® 8 6 e O o 6 8 & o & ¢ S 2 o 0 S ¢ & o &6 o OV o v & o
. e © e o e & o * o o e & o o o o ¢ o o * @ o e« * o L]
® 6 ® & ® o & 6 ¢ e & & * @ & o O o ¢ o s o 6 o o o
® o o o © & & o © o 5 s 0 2 ° & % 2 & o o o 6 o ¢ o o
e 6 © o & o © e ¢ ¢ O & O 9 © & O o ° o s & 6 s s o o

COBOL-74

COLLATING SEQUENCES AND CONVERSION TABLES

ALTERNATE NUMERIC TEST

DEFINING LOGICAL NAMES UNDER TOPS-20

TAPE HANDLING

DIRECTIONS AND DEFINITIONS . .
Definitions . « ¢« ¢« ¢ ¢ ¢« &

Finding the Right Instructlons

Symbols Used in the Text . .

FACTORS TO CONSIDER WHEN USING TAPES
General Defaults and Restrictions

¢ o o o o
* o & o o
e ° o o o o

.
.
.
3
.
.

* e

Defaults and Restrictions Specific to TOPS-20

Systems

. o . . * o

Defaults and Restrictions Specific to TOPS-19¢

SystemS . + ¢ ¢ ¢ s e e o o

Converting Tapes Between Labeled

USING SYSTEM-UNLABELED TAPES .
Tape Has No Labels . . .

Tape Drive Is Available to the

Tape Drive Is Owned by the System

Tape Has Labels . . o
USING SYSTEM-LABELED TAPES . .
. Tape Has ANSI Labels

viii

and Unlabeled

. . .

User

. .

« o o » o o
e ® o & o o
e & o o o o
e o o © o o

e ¢ e ¢ o o

’-‘J"J"-ﬂ'?'ﬂ"‘l

i1

|
B DN

m
[
wn

"-‘J’*J"‘J“]'?"!"ﬂ"d"‘l
[e-Weo M+ IENIENIEN e We W e)l

October 1985

F.4,.1,1 Transportable Tapes - F, D, and S Formats . . F-9
F.4.1.2 Undefined-Format Tapes - U-Format F-10
F 402 Tape HaS EBCDIC Labels » 3 » 3 . . F_ll

APPENDIX G FIPS FLAGGER

APPENDIX H DEBUG MODULE
H.1 USING THE COBOL-74 DEBUG MODULE . . +. ¢« ¢+ ¢ o« « o H-1
H.2 SPECIAL REGISTER DEBUG-ITEM . . . « ¢« « ¢« « o« « o H-1
H.zol Format Of DEBUG ITEM e o o o . e o o & o o o H-l
H.2.2 Execution of Debugging Sections e s ¢ ¢ o o s o H-3
H,2.2,1 Debugging on Cd-name . « 4+ +« &+ &« o o o« o o « o H=3
Ho2¢292 Debugging on Identifier e e o * e o o o e e o H"4
H.2,2.3 Debugging on File-name . ¢« ¢« « « o ¢ ¢« « &« o » H=4
H.2.2.4 Debugging on Procedure Name ., . . « ¢« ¢« « « o H-4
Hc 2.3 Data in DEBUG ITEM e & o e o & o o e e e e o o H-s
H.3 LOADING PROGRAMS WITH THE DEBUG MODULE H-7

APPENDIX I USING RMS INDEXED FILES
I.1l DEFINING RMS INDEXED FILES + ¢« 4 o o ¢ o o o o o o I-1
I.2 PROCESSING RMS INDEXED FILES . ¢ ¢ ¢ o ¢ ¢ o o o« o I-3
I.2.1 Opening RMS Indexed Files . « ¢« ¢ ¢ o« ¢ ¢ o o« o« I-3
I.2.2 Reading RMS Indexed Files . . +« « ¢ ¢ o o o o o I-3
I.2.3 Writing RMS Indexed Files . . &+ &« o o « o o o o I-4
I.2.4 Deleting RMS Indexed Records e o o o o o I-4
I.3 HANDLING ERRORS FROM RMS INDEXED FILES . e e o o I-4
I.4 RUNNING A PROGRAM THAT USES RMS INDEXED FILES « o I-6
I.5 RESTRICTIONS ON THE USE OF RMS INDEXED FILES . . . I-7
I.6 COBOL~-74/RMS INDEXED FILE EXAMPLE . . . « « « « o« I-8
I.7 USING RMSUTL L] L] - * . * L] L] * L] * L] . L] * . . L] 1_29
I.8 RMS COMPATIBILITIES WITH BASIC+2 . . &+ & « o« » » I-22

GLOSSARY

INDEX

FIGURES
l"l (a) Card—Type Format e o ¢ o o o o e e o e o e o 1-14
1-2(a) Terminal-Type Format with Line Numbers e e o o s 1-16
1-3(a) Terminal-Type Format without Line Numbers . . . 1-17
4-1 Direct Subscripting/Indexing . . . « « « « « +» o 4-11
4-2 Relative Subscripting/Indexing . . . + « ¢« « + + 4-11
4-3 Qualified Direct Subscripting/Indexing 4-12
4-4 Picture String Character Chart . « « « + « « + « 4-55
5-1 Order of Evaluation of a Conditional Expression 5-13
5-2 Order of Evaluation of a Compound—conditional

Exp!‘eSSlon e & o e o . e o o ¢ o o 5-14

5-3 PERFORM Cycle Logic - Two Variables e o o o o o 5-67
5-4 PERFORM Cycle Logic - Three Variables 5-68
7-1 COBOL ISAM File Environment . ¢« ¢ ¢ « « o o o « o« 71-3
8~-1 ASCII Recording Mode . o « &« « o o o o o o« o o & o 8-1
8-2 SIXBIT Recording Mode . + ¢ & ¢ & o o o o o o o o+ 8=2
8-3 EBCDIC Recording Mode . « « o o o o o« o s o o o o 8=-2
8-4 EBCDIC Recording Mode - Industry-Compatible . . . 8-2
8-5 Binary Recording Mode . .+ & &« ¢ ¢« 4 « ¢ ¢ o « o « 8-3
8-6 Fixed-Length ASCII . . 4 v & 4 ¢ o o« o « o o« + o+ o+ 8-4

ix October 1985

8-27

i~ OWOWWYWOOWOY
(]
I NOOBWN

S|
i
wN -

COBOL Fixed-Length ASCII with BEFORE ADVANCING . .
COBOL Fixed-Length ASCII with AFTER ADVANCING . .
Variable-Length ASCII . . . e s o o e o o o
COBOL Variable-Length ASCII with BEFORE ADVANCING
COBOL Variable-Length ASCII with AFTER ADVANCING

oooomtiocooooo
OHHOJOLIW

Fixed—Length SIXBIT e & o e o 6 o o » & o o o o 8- .

COBOL Fixed-Length SIXBIT e e o o e & o o o o o o -

Variable-Length SIXBIT e & o o . . 8‘1”
COBOL Variable—Length SIXBIT e o o e o & o o o o 8-12
Fixed"Length EBCDIC . . . 0 . O . e e e o o . . 8-13
COBOL Fixed_Length EBCDIC e & o & e o o s o s o 8-13
Variable-Length BBCDIC O 3 O 8"14
COBOL Variable-Length EBCDIC . . . + &« « « s o o« 8-15
COBOL Blocked Fixed-Length EBCDIC ., . + « « . . 8-16
Blocked Variable-Length EBCDIC e e o e« o o o o 8-17
COBOL Blocked Variable-Length EBCDIC . . « « . « 8-19
COBOL Standard Binary and ASCII Mixed-Mode Binary 8-28

COBOL Standard Binary and SIXBIT Mixed-Mode

Blna['y . - 8-21
COBOL Standard Binary and EBCDIC Mixed-Mode

Blnary 3 . . . 3 . 3 . 3 . 8_22
Statements Used to Sequentially Access a Relative

Flle . - . . . 0 O Y 8_26
ISAM Data File Structure 'y e o 8"28
Locating a Record in an Indexed-Sequential File 8-29

ISAM Index File SttUCture . 3 . 3 . . 3 3 0 . . 8-39
The Problem Of Buried Update e e o e o o o o o o o 9-2
The Problem of Deadly Embrace . . ¢ ¢« o« o« ¢ o « o 9-3
Projecting Resources for Simultaneous Update . . . 9-4
The OPEN Statement . o o e o o o . ® o e e o o o 9"5
Competing for Program Access to Files e e o o o« o 9-8
The RETAIN Statement o o e o o o o o o o o e o e o 9"9
The FREE Statement e e o o e o o . e o o e e o o 9"’11
Report A Format .« . o « ¢ o ¢ o o o s o o o o o« 10-2
Report B Format e e o o e o o o o ¢« o e o e o 10-3
Input Data File for Report Writer Program e o o« 10-4
Example of an Overlay Structure . « . « ¢ « « o 11-9
Sample COBDDT Histogram . . Y . 3 3 . 3 13-6
Sample Of FIPS Flagging - . » . . 3) . . . 3 . G"5

X October 1985

TABLES

3"1 Recording Modes o o o o e o @ o e o o & o o o o 3-26
3-2 Monitor File Status Bits . . « &« o« o o o o ¢ o » 3-33
3-3 Monitor EI.’I.’O[' COdeS e o o . o o . e o o e o o o 3—34
4-1 Standard Label for Magtapes . « « o« o« o « o« o o 4-21
5-1 Procedure Verb and Statement Categqgories . . « . . 5-3
5-2 Types of SegmentS + o o & o o o s o o o o o o o ¢ 55
5-3 Conditions, Logical Operators, and Parentheses

Comblnatlons * o o e o & 8 o o o o e e o 5-15
5-4 CLOSE Options and File Types e o o o o o o o o o 5-31
6-1 COBOL Switch SUMmMAary « « o « o ¢ ¢ o o o s o o o o 6-3
c-1 ASCII and SIXBIT-Collating Sequence and Conversion

to EBCDIC L . L] L] . L] L] . . . L] * L] . * L] . L[] L] L] C-l
Cc-2 ASCII to SIXBIT Conversion o o . C-3
c-3 EBCDIC Collating Sequence and Conversion to ASCII Cc-5

xi October 1985

INTRODUCTION TO THE COBOL-74 SYSTEM
AND THE STRUCTURE OF THE MANUAL

The typical COBOL program follows a fairly simple series of steps from
the human-readable format in which it is written to the
machine-readable format in which it is executed, The following flow
chart shows the basic steps which all programs take.

Introduction~1

Source Program
(.CBL)

\

Library File (.LIB)

COBOL-74 T created by LIBARY
COMPILER
N
~
~
~
~ ~ Compilation
Listing
(.LST)
Relocatable (.REL)
Object Module
, ﬂ
-~ — — — —— —— Other (.REL) |
LINKER Object Modules
!
Executable (.EXE)
Program
/
USER PROGRAM - C740TS

Simultaneous Report

Update Writer
COBDDT RERUN

MR-5.017-79

The program first sees the light of day as a source file which is
either created with a text editor or entered into the system by some
other means (for example, it could be punched into cards and loaded
through a card reader). This file is usually given a filename whose
extension is .CBL, and it is identified in the flow chart by this
extension.

The COBOL-74 compiler then translates the source file into a
relocatable object module. In order to do this, the compiler may
sometimes copy text from user 1libraries which contain often-used
pieces of code. These libraries, identified in the chart by the
extension of ,LIB, are created by the LIBARY utility. The output from
the compiler, the relocatable object module, 1is usually given an

Introduction-2

extension of .REL, and is identified by this extension in the £flow
chart. The compiler can optionally produce a file which contains the
compilation listing of the source program. This file is identified by
its extension, .LST.

At this point the program is given to the system 1linker, which
produces the executable version with the extension .EXE. (This manual
does not contain any information on the system 1linker. Users of
TOPS—-10 should refer to the LINK Reference Manual and the LOAD command
in the Operating System Commands Manual for more information about
LINK. Users of TOPS-20 should refer to the the LINK Reference Manual
and the LOAD command in the DECSYSTEM-20 user's Guide.)

The .EXE version of the program runs in conjunction with the
object-time system, C740TS. Among other things, the object-time
system handles I/O and calls routines from the COBOL-74 library to be
used at runtime. The wuser program is now in a format which can be
executed, but there is no guarantee that it will produce the correct
results. Most programs must still be debugged after they compile
error-free. The COBOL-74 system provides an on-line debugging
facility called COBDDT to assist the programmmer in finding out what
the program is really doing. COBDDT runs along with the user program
and the object-time system, and allows the steps which the program
executes to be monitored by the programmer.

Many COBOL programs use indexed files during their execution. These
files are convenient for many applications. The COBOL~74 system
provides a program, called ISAM, to create and maintain indexed files.

There are times when the wuser program is running and the system
operator has to shut down the system unexpectedly. Some programs are
written to be restartable, but many are not. The RERUN utility is
provided with COBOL-74 to help in this situation. RERUN can save
enough information to allow the program to be restarted after the
system is brought back up, even though no provision was made in the
program for the restart.)

Thus, the COBOL-74 system, in conjunction with the operating system,
provides complete facilities for the creation and execution of a COBOL
program. The rules regarding the creation of a COBOL-74 program, and
the syntax to be wused in the program, are described in Part 2,
COBOL-74 Language Reference Material. The individual wunits of the
COBOL-74 system are enumerated below.

1. The Compiler -

The compiler copies text from user libraries and translates
the COBOL-74 program into a relocatable object module.
Running the COBOL-74 compiler is described in Part 3, Chapter
6.

2. The OTS -

The object-time system runs the COBOL-74 program and allows
the program to use such facilities as simultaneous update and
Report Writer. Information on the file formats which the OTS
accepts may be found in Part 3, Chapter 8. The simultaneous
update facility is described in Part 3, Chapter 9, and Report
Writer in Part 3, Chapter 10. Subprograms, segmentation and
overlaying are covered in Part 3, Chapter 11. Chapter 12 of
Part 3 contains information on calling non-COBOL subprograms.

Introduction-3

3. The Utilities -

The COBOL-74 utilities - LIBARY, COBDDT, RERUN and ISAM -~ are
described in Part 3, Chapter 7. Information on the use of
COBDDT in improving the performance of COBOL-74 programs may
be found in Part 3, Chapter 13.

Part 4 of this manual contains appended material which may be of
interest to some users of COBOL-74. Appendix A presents a list of
differences between DIGITAL's COBOL-68 and DIGITAL's COBOL-74.
Appendix B is the 1list of COBOL-74 reserved words. Appendix C
provides ASCII, SIXBIT, and EBCDIC collating sequences, along with
conversion charts for these three codes. An alternate to the usual
numeric test, which may be elected at the time of installation of
COBOL-74, is described in Appendix D. Finally, Appendix E contains a
short description of the process of defining a logical name for
TOPS-20 users of the COBOL-74 utilities.

Introduction-4

CHAPTER 1

INTRODUCTION TO COBOL-74 LANGUAGE

This chapter describes the symbols, special terms, language elements,
and source program formats acceptable to COBOL-74. The source
language statements are discussed in subsequent chapters.

NOTE
In this manual the word COBOL
refers to COBOL~-74. Any
documentation concerning

DECtapes can be ignored if your
system does not have them.

1.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual
are necessary to describe the 1language or are commonly used COBOL
terms. The single exception to this statement is the term
BIS-compiler. This term refers to compiler implementations that
compile COBOL-74 using the Business Instruction Set (BIS). All users
of TOPS-20 get BIS code. Users of TOPS-10 who have a KS or KL central
processing unit get BIS code as the default, but the compiler may be
installed without the BIS option. TOPS-10 users who have a KI central
processor will usually not get the BIS option on their compilers. The
KI processor will not execute the BIS instructions; however, the KI
will run the compiler which produces BIS code should there be a need
for it (for more information, see the COBOL-74 1Installation
Procedures.) You can tell if your compiler is producing BIS code by
checking a 1listing of a compiled progran. If your compiler is
producing the BIS instructions, the 1letters BIS will follow the
version and edit numbers on top of the page.

1.1.1 Symbols

The symbology used in this manual to illustrate the various COBOL
statement formats is essentially the same as that used in other COROL
language manuals. 1Its basis is the system of symbols used in the
American National Standard and developed by CODASYL.

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.1.1 Underline - The underline is used to denote reserved Kkey
words. Key words (uppercase underlined words) are required when you
use a function of which they are a part. The absence of an underline
in an uppercase word denotes that the word is optional; you may use
or omit the word at your discretion.

NOTE

Uppercase words, whether underlined or
not, must be spelled correctly.

1.1.1.2 Brackets and Braces - When brackets, [], enclose a portion of
a general format, they denote an optional portion that may be included
or omitted as needed. When braces, {}, enclose a portion of a general
format, you must select one of the options within the braces.
Consider the following figure,

WORDS)
MEMORY SIZE integer ¢ CHARACTERS
MODULES f

The brackets indicate that the entire clause is optional. The braces
indicate that a choice of one of the words vertically stacked within
the braces must be specified.

Wherever a choice is required, the possibilities are vertically
stacked either within brackets or braces. Consider the following
example.

{SYNCHRONIZED} LEFT
SYNC RIGHT

The outside brackets indicate that the entire clause is optional. The
braces indicate that 1f the clause 1is wused, a choice of a word
vertically stacked within the braces must be made. ., The inside
brackets indicate that you may optionally select a vertically stacked
word within.

NOTE
When possibilities are vertically
stacked between brackets, you have the
option of overriding a default

condition. The default condition is
described in the general rules for the
clause.

1.1.1.3 The Ellipsis - The ellipsis (...) indicates that you may
repeat the item preceding it. The preceding item is usually enclosed
either by brackets or braces to remove any ambiguity as to which item
may be repeated. Consider the following example.

[SAME [RECORD] AREA FOR file-name-l [file-name-2] ...] ...
The final ellipsis indicates that the entire clause, if used, may be

repeated. The initial ellipsis indicates that the item file-name-2
may also be repeated within the clause.

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.2 COBOL Terms

The terms block, record, and item have special meanings when used in
relation to a COBOL program.

Term Meaning

Block Signifies a logical grouping of records. This term
commonly refers to a logical block of records on some
storage medium.

NOTE

The term "black" as defined here does not refer
to a "disk block", which is 128 words of
storage space on a disk.

Record Signifies a logical unit of information. In relation
to a data file, a record is the largest unit of logical
information that can be accessed and processed at a
time. Records can be subdivided into fields or items.

Item Signifies a logical field or group of fields within a
record. A group item is one that is further broken
down into subitems (for example, a group item called
TAX might be broken down into subitems called FED-TAX
and STATE-TAX). Subitems can be further broken down
into other subitems. An item that has no subitems is
called an elementary item.

1.2 ELEMENTS OF COBOL LANGUAGE

1.2.1 Program Structure

A COBOL program consists of four divisions. Each division is made up
of source language statements. Some statements are required in every
program; most of them are optional.

Division Meaning
IDENTIFICATION DIVISION Identifies the source program.
ENVIRONMENT DIVISION Describes the computer on which the

source program is to be compiled,
the computer on which the object
program is to run, and certain
relationships between program
elements and hardware devices.

DATA DIVISION Describes the data to be processed
by the object program.

PROCEDURE DIVISION Describes = the actions to be
performed on the data.

1-3

INTRODUCTION TO COBOL-74 LANGUAGE

NOTE

The COBOL-74 compiler will recognize
source line numbers up to and including
8184. If your program (including
library routines) exceeds this maximum,
the compiler will start numbering again
at 0001l. Since this causes two or more
lines to have a single line number, you
should exercise caution when debugging
your program. The cross-reference
listing may be confusing. However, the
compiler will generate correct code
regardless of how many lines are in the
program or how they are numbered in the
cross-reference listing.

1.2.2 COBOL-74 Character Set

Within a source program statement, all ASCII characters are valid
except:

1. null, delete, and carriage return (which are ignored)

2. 1line feed, vertical tab, form feed, and the printer control
characters (20(8) through 24(8)), which mark the end of a
source line

3. CTRL/Z (32(8)), which marks the end-of-file

The compiler translates the lowercase ASCII characters to uppercase
characters except when they appear in nonnumeric literals.

Of this character set, 37 characters (the digits 0 through 9, the 26
letters of the alphabet, and the hyphen) can be used by the programmer
to form COBOL user-defined words, such as data-names, procedure-names,
and identifiers.

The remaining ASCII characters which are acceptable to the COBOL-74
compiler are listed below.

Punctuation characters include:

A (space) " or ' (quotation mark)
, (comma) ((left parenthesis)
; (semicolon)) (right parenthesis)

(period) *l (horizontal tab)

INTRODUCTION TO COBOL-74 LANGUAGE

Special editing characters include:

+ (plus sign) * (check protection symbol)
- (minus sign) | Z (zero suppression)

$ (dollar sign) B (blank insertion)

, (comma) 0 (zero insertion)

. (decimal point) ‘ CR (credit)

/ (slash) DB (debit)

Special characters used in arithmetic expressions include:

+ (addition) / (division)
- (subtraction) ** (exponentiation)
* (multiplication) t (exponentiation)

Special characters used in conditional (IF) statements include:

= (equal) > (greater than) < (less than)

NOTE

These special characters will not
nhecessarily be underlined when they
appear 1in formats. For example, an
underlined minus sign might easily be
confused with an equal sign. However,
they are wusually required items. You
may not omit them, wunless you are
specifically told otherwise.

1.2.3 Words

A COBOL word is a character string which has not more than 30
characters and is either a user-defined word or a reserved word. For
COBOL-74, as for most COBOL compilers, a word may be either
user-defined or reserved, but not both.

1.2.3.1 Reserved Words - A reserved word is a COBOL word that is one
of a specific 1list that may be wused in COBOL source programs as
specified in the general formats. You cannot use a reserved word as a
user-defined word; the two types are mutually exclusive. (See
Appendix B for a complete list of COBOL reserved words).

INTRODUCTION TO COBOL-74 LANGUAGE

There are six types of reserved words:

1.

Key words

A key word is required when the format in which the word
appears is used in a source program. Within each format, key
words are uppercase and underlined. Consider the following
example.

COMPUTE identifier-1 [ROUNDED] { identifier-2 [ROUNDED}] ...
=arithmetic-expression [ON SIZE ERROR imperative-statement]

In this case, the words COMPUTE, ROUNDED, SIZE, and ERROR are
key words.

Optional Words

Within each format, uppercase words that are not underlined
are optional words included for readability. You may use or
omit these words indiscriminately. The presence or absence
of an optional word does not alter the semantics of the COBOL
program in which it appears. Consider the following example.

LINAGE IS integer-1 LINES [WITH FOOTING AT integer-2]
[LINES AT TOP integer-3]

In this case, the words IS, LINES, WITH, and AT are optional
words.

Connectives
There are three types of connectives:

a. Qualifier connectives that associate a data-name, a
condition-name, or a text-name with its qualifiers: OF,
IN (See Section 4.7, Qualification.) An example of this
type is

COPY ACTREC OF COBLIB.

b. Series connectives that 1link two or more consecutive

operands: separator comma, separator semicolon. An
example is

GO TO PART1, PART2, PART3 DEPENDING ON COUNTERI.

c. Logical connectives that are used in the formation of the
following conditions: AND, OR, AND NOT, OR NOT. An
example is

IF HOURS-WORKED IS GREATER THAN ZERO AND NOT
DEDUCTION-TIME PERFORM PRINT-CHECK.

Figurative Constants

A few specific constant values are used frequently and in
enough different ways to make it useful to have names for
them. The names given to them are called Figurative
Constants. These names are reserved words and are listed
below.

INTRODUCTION TO COBOL-74 LANGUAGE

The values represented by figurative constants are generated
by the compiler and referenced through the use of the
reserved words given below. These words must not be bounded
by quotation marks when used as figurative constants. The
singular and plural forms of figqurative constants are
equivalent and can be used interchangeably to increase
readability.

The values which the compiler generates for you, and the
reserved words that name them, are as follows:

ZERO Represent the value 0, or one or more of the
ZEROS character 9, depending on context.

ZEROES

SPACE Represent one or more of the character

SPACES "space”.

HIGH-VALUE Represent one or more of the character that

HIGH-VALUES has the highest ordinal position in the
’ character set's collating sequence (in ASCII
code, this is octal 177).

LOW-VALUE Represent one or more of the character that

LOW-VALUES has the 1lowest ordinal position in the
character set's collating sequence (in ASCII
this is octal 004).

QUOTE Represent one or more occurrences of the
QUOTES quote character, usually '"' (double quote).

ALL literal Represents one or more repetitions of the
string of characters that compose the literal.
The literal must be either an alphanumeric
literal or a figurative constant other than
ALL. The ALL literal cannot be associated with
a numeric or numeric edited item. When a
figurative constant is used, the word ALL is
redundant and is optional. You can use it for
readability if you wish.

Frequently a figurative constant represents a string of
characters whose length is not explicitly stated. When this
happens, the compiler determines the 1length of the string
from context. The figurative constant can be associated with
another data item by the context, as in the following
statements:

MOVE SPACES TO WORK-RECORD
IF AMOUNT-OWED EQUALS ZERO PERFORM CLOSE-ACCOUNT

Alternatively, the figurative constant can stand by itself
with no relation to any data item, as in:

DISPLAY "BALANCE IS" ZERO

STRING DAY-CODE, SPACE, "-", SPACE, MONTH-CODE
DELIMITED BY SIZE INTO DSPLY-DATE

1-7 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

In cases where the figurative constant is associated with a
data item, the compiler assumes that the string of characters
represented by the figurative constant has the same number of
characters as the associated data-item. 1In the case of (the
figurative constant) ALL literal, the 1literal 1is repeated
from 1left to right and truncated on the right, if necessary.
Thus, 1f WORK-RECORD in the above example contains 128
characters, the figurative constant SPACES represents a
string of 128 spaces. If AMOUNT-OWED is an eight-character
numeric field with two decimal places, ZERO represents the
value 000000.00. In the following example:

MOVE ALL "ABC" TO HOLD-AREA

If HOLD-AREA is a ten-character alphanumeric field, its
contents after the MOVE is:

A B C A B C A B C A

If you associate a JUSTIFIED clause with the data item, the
character repetition and truncation takes place before any
justification.

When the figurative constant is not associated with a data
item, as 1in the second set of examples above, the length of
the character string is the length of the 1literal, or one
occurrence of the literal in the case of ALL literal. This
is true even if you use the plural form instead of the
singular. That is, all of the following statements cause the
same display:

DISPLAY ZERO.
DISPLAY ZEROS.
DISPLAY ALL ZEROS.

In each case, one zero is displayed.

A figurative constant can be used whenever a literal appears
in a format. However, 1if the 1literal 1is restricted to
numeric characters, the only figurative constants permitted
are ZERO (ZEROS, ZEROES), LOW-VALUE (LOW-VALUES), and
HIGH-VALUE (HIGH-VALUES).

Each reserved word that is used to reference a figurative
constant value 1is a distinct character string with the
exception of the construction ALL literal, which is composed
of two distinct character strings.

Special Registers

COBOL-74 recognizes four reserved words as special registers:
DAY, DATE, TIME, and LINAGE-COUNTER. All special registers
have 1implied data descriptions of unsigned elementary
integers. The lengths of DAY, DATE, and TIME are fixed; the
length of LINAGE-COUNTER depends upon the file description
statement that generates the register.

DAY is five digits long. 1Its value represents the number of
the current day of the year. 1Its format is:

YYDDD
where YY is the year of the century, and
DDD is the number of the day of the year.
1-8 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE
DATE is six digits long. 1Its value represents the current
date. 1Its format is:

YYMMDD
where YY is the year of the century,

MM is the number of the month, and

DD is the number of the day.
TIME is eight digits long. 1Its value represents tﬁe current
elapsed time since midnight on a twenty-four-hour basis. Its
format is:

HHMMSShh
where HH is the hours,

MM is the minutes,

§S is the seconds, and

hh is the 1/100ths of a second.
DAY, DATE, and TIME may be accessed by ACCEPT statements in
the Procedure Division. See Section 5.9.1 for the correct
format to use with the ACCEPT verb.
The LINAGE-COUNTER special register is generated whenever the
file description of a sequential file includes the LINAGE
clause. The contents of a LINAGE-COUNTER represent the
current 1line number within the current page of output. The
contents of a LINAGE-COUNTER are updated automatically by
WRITE statements referring to the associated sequential file.
The LINAGE clause and LINAGE-COUNTER are fully explained in
Section 4.9.31.

6. Special-Character Words

The arithmetic operators +, -, *, /, **, *, and the relation
characters <,>, and = are spe01a1—character reserved words.

1.2.3.2 User-Defined Words - A user-defined word is a COBOL word
which is supplied by the user to satisfy the format of a clause or
statement. The characters which may be used to form user-defined
words are the letters of the alphabet, the digits 0 through 9, and the
hyphen. The hyphen may not be used as the first or last character in
the user-defined word.
There are 17 types of user-defined words:

1. alphabet-name

2. cd-name

3. condition-name

4. data-name

1-9

INTRODUCTION TO COBOL-74 LANGUAGE

5. file-name

6. index-name

7. level-number
8. library-name
9. mnemonic-name
10. paragraph-name
11. program=-name
12. record-name
13. report-name
1l4. routine-name
15. section-name
16. segment-number
17. text-name

Each of these user-defined word types is described in the Glossary
which appears at the end of this manual.

1.2.4 Literals

A literal is a character string whose value is determined by the
ordered set of characters of which it is composed. You can also use a
figurative constant as a literal. There are two types of literals:
numeric and alphanumeric.

1.2.4.1 Numeric Literal - A numeric literal is a character string of
from 1 to 20 characters selected from the digits 0 through 9, the plus
sign, the minus sign, and the decimal point. The rules £for the
formation of numeric literals are as follows:

1. A literal must contain at least 1 digit and no more than 18
digits.

2. A literal must not contain more than one sign character. If
a sign is used, it must appear as the leftmost character of
the literal. If the literal is unsigned, it is considered
positive.

3. A literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
character. If the 1literal contains no decimal point, the
literal is considered an integer.

NOTE

The word integer, appearing .in a general format,
represents a nonnegative numeric 1literal with no
decimal point.

1-10

INTRODUCTION TO COBOL-74 LANGUAGE

If a literal conforms to the rules for the formation of
numeric 1literals but is enclosed in quotation marks, it is
considered an alphanumeric literal and is treated as such by
the compiler. |

4. The value of a numeric 1literal 1is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric. (See Section 4.10.16,
The PICTURE Clause.) The size of a numeric literal is equal
to the number of digits specified by the user, including
leading zeros, if any.

1.2.4.2 Alphanumeric Literals - An alphanumeric literal is a
character string representing from 1 to 120 characters, delimited on
both ends by quotation marks and consisting of any allowable character
in the computer's character set. An opening quotation mark must be
immediately preceded by a space or left parenthesis. A closing
quotation mark must be immediately followed by one of the separators
(space, comma, semicolon, or right parenthesis) or by the terminator,
period.

NOTE

You may use either the single quote
character (') or the double quote (").
Whichever one you use, you must be sure
to pair them correctly - do not try to
pair a single quote with a double quote
or vice versa.

To represent one quotation-mark character within an alphanumeric
literal, two contiguous quotation marks must be used. The value of an
alphanumeric literal in the object program is the string of characters
itself, except that:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other punctuation characters are part of the value of the

alphanumeric literal, not separators. All alphanumeric literals are
category alphanumeric. (See Section 4.9.18, The PICTURE Clause.)

1.2.5 Separators

A separator is a string of one or more punctuation characters. The
rules for forming separators are:

1. Space

a. Anywhere a space is used as a separator, more than one
space may be used.

b. A space may immediately precede all separators except the

closing quotation mark. Here the space is considered
part of an alphanumeric literal, not a separator.

1-11

INTRODUCTION TO COBOL-74 LANGUAGE

€. A space may immediately follow any separator except the
open gquotation mark. In this case, a following space is
considered part of an alphanumeric 1literal, not a
separator.

Comma and Semicolon

The punctuation characters, the comma and semicolon, are
separators. You may insert these separators only where
explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence definitions, or
by source program format rules.

Right Parenthesis and Left Parenthesis

Right parenthesis and left parenthesis are separators only
when used in balanced pairs to delimit subscripts or indexes.

Quotation Marks

Quotation marks may be used only in balanced pairs to delimit
alphanumeric literals or in adjacent pairs to pass one
quotation mark in an alphanumeric literal. (See note
concerning quotation marks in Section 1.2.4.2, Alphanumeric
Literals.)

Horizontal Tab

The horizontal tab character is governed by the same rules
that govern the space character. It is normally used to
vertically align statements or clauses on successive lines of
the source program listing. The compiler, upon encountering
a tab character, generates one or more space characters
consistent with the tab character position in the source
line.

Pseudo-text Delimiter

Pseudo-text delimiters set off textual matter in the COPY
statement from the rest of the sentence. Each delimiter
consists of two contiguous equal signs ==), The opening
pseudo-text delimiter must be immediately preceded by a
space; the closing delimiter must be immediately followed by
one of the separators space, comma, semicolon, or period.
These delimiters may appear only in balanced pairs delimiting
pseudo-text.

NOTE

There are certain rules for writing
source programs which supersede these
general rules. For a discussion of
source program formats see Section 1.3.

INTRODUCTION TO COBOL-74 LANGUAGE

1.3 SOURCE PROGRAM FORMAT

There are two basic types of source program formats in which you may
write your COBOL-74 programs. These two types arise from the methods
of entering the source program into the system. The first |is
conventional card-type format. You should use this type if you wish
your COBOL-74 program to be compatible with other compilers. The
second 1is the standard DEC format which is designed for easy use on
terminals. This format is the one to use for those programs which are
to be entered into the system through a terminal using a text editor.
The compiler will assume that the source program is written in
terminal-type format unless the /S switch is included in the command
string to the compiler (refer to Appendix C).

Certain margins which begin the areas used for writing COBOL-74
statements are standard for source programs. The standard names for
these margins are Margins L, A, B, and R. As you might expect,
Margins L and R are the 1left and right margins of the line,
respectively. Margins A and B mark the beginning of two areas, Areas
A and B. Area A 1is where all division-names, section-names,
paragraph-names, and FD (File Description) entries must begin. All
other entries must begin in Area B. Although the actual character
position which marks each of these margins changes from format to
format, the function of each area is the same; in other words, you
must begin your division-names at Margin A no matter what format you
use, no matter where Margin A happens to be placed in that format.

NOTE

These rules agree with the 1974 ANSI
standard for source program formats.
Programs written according to the rules
will be more readable and transportable.
The COBOL-74 compiler, however, does not
do complete syntax checking to determine
if you have followed all rules, and will
not always issue an error message if you
violate them. Thus, you are encouraged
to conform to the rules to avoid
unpredictable results.

Some of the rules for using source program formats remain constant
regardless of which format you use. These rules are given below.
Refer to them for all types of formats.

1. Continuation Area - If you wish to split a word or 1literal
across two 1lines, you must use this area to indicate your
wish to the compiler. To do this, write the first line up to
the point at which you wish to split it, then place a hyphen
(=) in the continuation area of the next 1line and continue
the second 1line beginning at or after Margin A. If you are
splitting a word or numeric 1literal you may leave spaces
between the 1last character in the first line and the end of
the source statement area. (This area ends at the
identification area, when it exists; otherwise it ends at
Margin R.) However, if you wish to split an alphanumeric
literal you must not leave spaces after the last character of
the first line, since the compiler will assume that those
spaces are part of the literal. 1If you wish only to continue
a sentence on the next line without splitting any words, you
may simply write the first line, then continue on the next
line; do not use the continuation column for this purpose.

1-13

INTRODUCTION TO COBOL-74 LANGUAGE

2. Comment Lines - You may insert comment 1lines into your
COBOL-74 program by wusing the continuation area. 1If the
compiler finds an asterisk (*) in that area it will list the
remainder of the 1line as a comment on the next line. 1If
there is a slash (/) instead of an asterisk a new page will
be started and the comment will be listed at the top of the
new page.

NOTE

All formats may be used with any input
medium. The names of the types of
formats refer to their origins, not
their uses.

1.3.1 Card-type Format

You should use card-type format if you wish to compile your program
under an operating system other than TOPS-10 or TOPS-20. Your program
may be punched on an off-line card punch or created with an on-line
text editor. This format uses card sequence numbers which must be
created by the user. The layout of a line in this format is shown 1in
Figure 1-1. The numbers refer to card columns or character positions.

CARD-TYPE FORMAT

1 ‘ 6 7 8 12 ﬁ’/ / 73 80
|| l ,]
— ———— — _L\/” - ~ .

L C A B | MR.5.018.79

Figure 1-1(a) Card-type Format

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 80. Margin A is between positions 7 and 8
and begins the area labeled A in the figure. Margin B is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by the user who creates the file on a terminal or
a card punch.

2. Debug Lines - You may insert debug lines into your program by
putting a "D" in the continuation area (column 7). The
compiler will recognize it and print it on the source listing
with the spacing similar to a comment line.

INTRODUCTION TO COBOL-74 LANGUAGE

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 8. Margin A is between positions 7 and 8
and begins the area labeled A in the figure. Margin B 1is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by you when you create the file on a terminal or a
card punch.

2. Continuation Area - If you wish to use the continuation area,
type one of the following characters as the first character
of the continued line:

e Hyphen (-) - Specifies that this is a continuation of the
previous line.

® Asterisk (*) - Specifies that the line is a comment. The
compiler ignores the line.

e Slash (/) - Specifies a page change in the listing file.
The page change 1is numbered as a sub-page and is
incremented by 1.

3. Debug Lines - You can insert debug lines into your program by
putting a "D" in the continuation area (column 7). The
compiler recognizes it and prints it on the source 1listing
with the spacing similar to a comment line. However, with
the terminal-type format (Section 1.3.2), it is not possible
to determine if the "D" is in the continuation area or in
column 7., Therefore, the "\D" can be used instead.

4. Identification Area - This area is marked I in the figure
(positions 73 through 88). These eight character positions
can hold identifying information that can be composed of any
eight characters. This information is printed on the source
listing, and can be used to identify the card deck (if the
source code is in fact on cards).

NOTE

The card sequence numbers are not the same as the line
numbers created by a 1line editor. The numbers
supplied by an editor are not acceptable to COBOL-74
when you specify card-type format.

The examples in Figure 1-1(b) illustrate these rules. The first two
lines are simple statements, with a line number in area L, COBOL-74
statements in areas A and B, and the 1identification area containing
the name of the program. The third line shows how the continuation
column is used to split a word across two lines. Note that the word
can be written right up to the end of area B.

1.3.2 Terminal-Type Format

If you are writing your program using a text editor and a terminal to
input the source code, terminal-type format 1is your best choice.
There are two types of terminal-oriented formats, one with 1line
numbers and one without. Layouts and examples of each type are shown
in the figures which follow.

1-15 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

1.3.2.1 With Line Numbers - This format is suitable 1if you wuse a
line-oriented editor such as EDIT or S0S. The format is shown in
Figure 1-2(a). format is shown in Figure 1-2(a).

TERMINAL-TYPE FORMAT - WITH LINE NUMBERS

1 12 122

6 7 8

L L]
\ e e .
L Zz C A B

MR-5-966-81

Figure 1-2(a): Terminal-Type Format with Line Numbers

In this format, margin L is to the left of position 1 and margin R is
to the right of position 122. Margin A is between positions 7 and 8
and begins the area labeled A, Margin B is between positions 11 and
12 and begins the area 1labeled B. Therefore, areas A and B can
contain a maximum of 114 characters.

The following rules pertain to the use of this source format:

l. Line Numbers - These are placed in area L (positions 1
through 5) either by the line editor or by you. If you are
using an editor which supplies line numbers you must not add
numbers yourself - one set is enough.

2, Position 6 - This position (marked Z in the figure) remains
blank. The editor can insert a tab here for purposes of
making your text more readable; if so, the compiler reads the
tab as a space.

3. Continuation Area - If you wish to use the continuation area,
type one of the following characters as the first character
of the continued line:

e Hyphen (-) - Specifies that this a continuation of the
previous line.

e Asterisk (*) - Specifies that the line is a comment. The
compiler ignores the line.

e Slash (/) - Specifies a page change in the listing file.
The page change 1s numbered as a sub-page and is
incremented by 1.

However, if you do not wish to use the continuation area, you
can ignore it altogether - you do not need to type a space at
the beginning of the line. If you do type a space as the
first character of a 1line, the compiler assumes that you
meant the space to be part of the line.

4. Debug Lines - Debug lines can be inserted 1in your program
with this format if you type "\D" (backslash D) as the first
two characters on the line. 1If you use "D" as 1in card—-type
format, the compiler reads the "D" as the first character of
a word beginning in area A.

The examples in figure 1-2(b) illustrate the use of this format. The
first two lines are simple COBOL-74 statements with the five-character
line number in area L and areas Z and C blank. The third 1line shows
how a word is split across two lines. WNote that you can leave spaces
between the last letter of the word and margin R without confusing the
compiler.

1-16 October 1985

INTRODUCTION TO COBOL-74 LANGUAGE

1.3.2,2 Without Line Numbers - If you decide to use a terminal to
enter your program but your editor (such as TECO or TV) does not
supply line numbers (or you requested that the editor remove them when
you finished editing), this is the simplest format to use. The format
is shown in Figure 1-3(a).

TERMINAL-TYPE FORMAT - NO LINE NUMBERS

o 1 5 ., 122
] o
—_—
N — ~ -
C A R MR-5-967-81

Figure 1-3(a): Terminal-Type Format without Line Numbers

In this format, margin L is to the left of position @, if it exists,
or position 1, if position # does not exist. Margin R is to the right
of position 122, Margin A is to the left of position 1 and begins the
area labeled A. Margin B is between positions 4 and 5 and begins the
area labeled B. Therefore, areas A and B can contain a maximum of 114
characters.

The following rules pertains to the use of this source format:

l. Continuation Area - If you wish to use the continuation area,
type one of the following characters as the first character
of the continued line:

e Hyphen (-) - Specifies that this is a continuation of the
previous line.

e Asterisk (*) - Specifies that the line is a comment. The
compiler ignores the line.

e Slash (/) - Specifies a page change in the listing file.
The page change 1is numbered as a sub-page and is
incremented by 1.

If the compiler finds one of these characters at the
beginning of a line it assumes that the line has a position #
- in other words, a continuation area. Otherwise, each 1line
starts in position 1 and there is no position #.

2. Debug Lines - Debug lines can be inserted into the program.
To do this type a "\D" (backslash D) as the first two
characters on the line.

The examples in Figure 1-3(b) show this format's simplicity. The
first two lines are the same simple COBOL-74 sentences as above. Note
that the paragraph-name starts in the very first character position.
The third line shows how to tell the compiler that the line you enter
is a continuation (or a comment) line. The first half of the line |is
entered beginning in the first position of Area B, while the second
half begins with a hyphen and continues from the second position.

1-17 October 1985

72 80

—
o

=]
p=]
><
>
(@)
[

—
[3X)
(=]
= e |

—

MR-S-1494-81

Figure 1-1 (b)

CEkfs
Tl TAlF PRI
1 NTH, SIPIACEL L ISIPIACE] - MO [T RE CENTE DAY [, S IPIAICEL - "[, [SIP
1 5 EL/TMIITED| BlY] Is|TZ/e[TIN[Tio[plz[s|PLLIAlY|-pRTE

8T-T

MR-S-1485-81

Figure 1-2 (b)

1N

m

O
v
"

%

©

=

O

%

—

)
=

m

(]

m

=

—

1
=
p=

-y
-

%)

o

=

)

[a)
"
"

)

vl

>

(]

m
"

=

=)

(7

mi=
Ol
—HlO
[%)
=10
2=
—

E E[,M0
SII|ZE] |IINIT|O] |DI|S|P)

MR-S-1496-81

Figure 1-3 (b)

JOVNONYT VL-#OHOD OL NOILONAOYLINI

INTRODUCTION TO COBOL-74 LANGUAGE

1.4.1 The COPY Statement
Function

The COPY statement incorporates text from a COBOL library into a COBOL
source program. (For a complete description of COBOL libraries, see
the COBOL-74 Usage Material, Part 3 of this manual.) The COPY
statement may also be used to replace specified text in the source
text being copied.

General Format

o
-

l

—

N; library-name

COPY text-name {

==pseudo-text-1== ==pseudo-text-2==
REP N identifier-1 BY identifier-2
literal-1 - literal-2
word-1 word-2
Technical Notes
NOTE

In the technical notes which follow, the
term string-1 1is wused to denote the
character string which is used in place
of the following: pseudo-text-1,
identifier-1, literal-l, or word-1l. The
term string-2 is similarly used.

1. If more than one COBOL library is available during
compilation, text-name must be gualified by the library-name
identifying the COBOL library in which the text associated
with text-name resides.

Within one COBOL library, each text-name must be unique.

INTRODUCTION TO COBmL—74 LANGUAGE

The COPY statement must be preceded by a space and terminated
by the separator period. The entire statement, including the
period, will be removed when' the text is copied from the
library. 1

String-1 must not be null, npr may it consist solely of the
character space(s), nor may it consist solely of comment
lines. |

String-2 may be null.

Character-strings within string-1 and string-2 may be
continued. However, both characters of a pseudo-text
delimiter must be on the same line.

A COPY statement may occur ih the source program anywhere a
character-string or a separator may occur except that a COPY
statement must not occur within another COPY statement.

The effect of processing a COPY statement is that the library
text associated with textiname 1is copied into the source
program, logically replacing the entire COPY statement,
beginning with the reserved word COPY and ending with the
punctuation character period, inclusive. The compilation of
a source program containing COPY statements is logically
eqguivalent to processing all COPY statements prior to the
processing of the resulting source program. For clarity, use
the double equal sign (==) afround string-1] and string-2 to
designate <clearly the string that is being replaced and the
string that is replacing that text. See Note 10 for an
example of the use of the double equal sign.

If the REPLACING phrase is niot specified, the library text is
copied wunchanged. 1If the REPLACING phrase is specified, the
library text is copied and elach properly matched occurrence
of string-1 in the 1library text 1is replaced by the
corresponding string-2. |

The comparison operation to determine text replacement occurs
as follows: :

a. Any separator comma, semicolon, and/or space(s) preceding
the leftmost library tekt-word is copied into the source
program. Starting with the leftmost library text-word
and the first string~l that was specified in the
REPLACING phrase, the entire REPLACING phrase operand
that precedes the reserved word BY is compared to an
equivalent number of conltiquous library text-words.

b. String-1 matches the libfrary text if, and only if, the
ordered sequence of text-words that forms string-1 is
equal, character for character, to the ordered sequence
of library text-words.! For purposes of matching, each
occurrence of a separator comma or semicolon in string-1
or in the library text is considered to be a single space
except when string-l consists solely of either a
separator comma or . semicolon, in which case it
participates in the match as a text-word. Each sequence
of one or more space| separators is considered to be a
single space. !

c. If no match occurs, the tomparison is repeated with each
next successive string-1, if any, in the REPLACING phrase
until either a match is found or there is no next
successive REPLACING operand.

1-20: January 1980

1l9.

11.

INTRODUCTION TO COBOL-74 LANGUAGE

b. String-1 matches the library text if, and only 1if, the
ordered sequence of text-words that forms string-1 is
equal, character for character, to the ordered sequence
of 1library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in string-1
or in the library text is considered to be a single space
except when string-1 consists solely of either a
separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence
of one or more space separators is considered to be a
single space.

¢. If no match occurs, the comparison is repeated with each
next successive string-1, if any, in the REPLACING phrase
until either a match is found or there 1is no next
successive REPLACING operand.

d. When all the REPLACING phrase operands have been compared
and no match has occurred, the leftmost library text-word
is copied into the source program. The next successive
library text-word 1is then considered as the leftmost
library text-word, and the comparison cycle starts again
with the first string-l specified in the REPLACING
phrase.

e. Whenever a match occurs between string-1l and the library
text, the corresponding string-2 1is placed into the
source program. The 1library text-word immediately
following the rightmost text-word that participated in
the match is then considered as the leftmost 1library
text-word. The comparison cycle starts again with the
first string-1 specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost
text-word in the library text has either participated in
a match or been considered as a leftmost library
text-word and participated in a complete comparison
cycle.

When you use the REPLACING phrase, you must replace entire
data names. You cannot replace parts of data-names. For
example, to replace REPORT-ACCT-NO with OUTPUT-ACC-NO, vyou
must specify:

REPLACING ==REPORT-ACCT-NO== BY ==0QUTPUT-ACCT-NO==,.

Thus, replacing REPORT- by OUTPUT- produces an error message.
For purposes of matching, a comment line that occurs 1in the
library text and string-l is interpreted as a single space.

Comment lines that appear in string-2 and 1library text are
copied into the source program unchanged.

1-21 : October 1985

12.

13.

14.

15.

l6.

INTRODUCTION TO COBOL-74 LANGUAGE

Debugging 1lines are permitted within 1library text and
string-2. Debugging lines are not permitted within string-1;
text-words within a debugging 1line participate in the
matching rules as if the 'D' did not appear in the indicator
area. If a COPY statement is specified on a debugging 1line,
then the text that is the result of the processing of the
COPY statement also appears as though it were specified on
debugging lines with the following exception: comment lines
in library text appear as comment lines in the resultant
source program.

The text produced as a result of the complete processing of a
COPY statement must not contain a COPY statement.

The syntactic correctness of the 1library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source program cannot be determined until all
COPY statements have been completely processed.

Library text must conform to the rules for COBOL source
program format. (See Section 1.3.) You can copy text from a
library without worrying about what format your program is
in, however.

For purposes of compilation, text-words after replacement are
placed in the source program according to the rules for
source program format.

CHAPTER 2

THE IDENTIFICATION DIVISION

The Identification Division is required in every source program. It
identifies the source program and the output from compilation. 1In
addition, it may contain other documentary information such as the
name of the program's author, the name of the installation, the dates
on which the program was written and compiled, any special security
restrictions, and any miscellaneous remarks.

General Structure

1D
{ IDENTIFICATION}———DIVISION'

[PROGRAM-ID. program-name.]
[M_Qg. ccmment-entry :]

[INSTALLATION. comment-entry]
[:DATE-WRITTEN. comment-entry ..:]
[DATE-COMPILED. comment-entry]
[:SECURITY. comment-entry ..;]

Technical Notes

1. The Identification Division must begin with the reserved
words IDENTIFICATION DIVISION followed by a period and a
space. Note that in COBOL-74 the reserved word ID may be
substituted for IDENTIFICATION in the division header.

2. The PROGRAM-ID paragraph contains the name identifying the
program. The program-name may have up to six characters, and
must contain only letters, digits, and the hyphen. It can be
enclosed in quotation marks. The program-name cannot be a
reserved word and must be unique. It cannot be the same as a
section, paragraph, file, data, or subprogram name. This
paragraph is optional. If it is not present, the name MAIN
is assigned to the program.

2-1

THE IDENTIFICATION DIVISION

The remaining paragraphs are optional and, if used, may
appear in any combination and 1in any order. A comment
paragraph consists of any combination of characters from the
COBOL character set organized to conform to COBOL sentence
and paragraph format. All text appears as written on the
output listing, except the DATE-~COMPILED paragraph which will
be replaced by the current date. Reserved words can be used
in any comment paragraph.

THE IDENTIFICATION DIVISION

GENERAL FORMAT FOR IDENTIFICATION DIVISION

{ %_BENTIFICATION" DIVISION.
[PROGRAM-ID. program-name.]
Ew. comment-entry . :|

[INSTALLATION. comment-entry]
[DATE-NRITTEN. comment-~entry .. :]
[DATE-COMPILED. comment-entry :l
[SECURITY. comment-entry .]

2-3

CHAPTER 3

THE ENVIRONMENT DIVISION

The Environment Division allows you to describe the particular
computer configurations you wish to use for program compilation and
execution. In this division you also specify the files and devices
you will wuse for 1input and output. The clauses used to do these
things are presented on the following pages.

THE ENVIRONMENT DIVISION

CONFIGURATION SECTION

3.1 ENVIRONMENT DIVISION CLAUSE FORMATS
3.1.1 CONFIGURATION SECTION
The Configuration Section allows you to describe the computers used
for program compilation and execution, and to assign mnemonic-names
for input/output devices. The Configuration Section consists of the
section name (CONFIGURATION SECTION.) followed by one or more of the
following paragraphs:

SOQURCE-COMPUTER. (See Section 3.1.2)

OBJECT-COMPUTER. (See Section 3.1.3)

SPECIAL-NAMES. (See Section 3.1.4)

Technical Notes
1. This section is optional.

2. All commas and semicolons are optional. A period must
terminate the entire entry.

THE ENVIRONMENT DIVISION

SOURCE-COMPUTER

3.1.2 SOURCE-COMPUTER
Function
The SOURCE-COMPUTER paragraph describes the computer on which the

program is to be compiled.

General Format

SOURCE-COMPUTER. computer-name EWITH DEBUGGING MODE])

Technical Notes
1. This paragraph is optional.

2. Computer-name must be one of the list DECsystem-10,
DECSYSTEM-20, PDP-10, or PDP-integer-1. Integer-1 must be in
the range 1000 to 1099.

3. If the WITH DEBUGGING MODE clause is specified, all debugging
lines are compiled. If it is not specified all debugging
lines are treated as if they were comment lines. In either
case all USE FOR DEBUGGING statements are compiled as if they
were comments. This is because COBDDT accomplishes what is
otherwise done with debugging statements.

Examples
SOURCE-COMPUTER. DECSYSTEM-1055.

SOURCE-COMPUTER. DECSYSTEM-20 WITH DEBUGGING MODE.

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER

3.1.3 OBJECT-COMPUTER
Function

The OBJECT-COMPUTER paragraph describes
program is to be executed.

General Format

OBJECT-COMPUTER. computer-name

WORDS
MEMORY SIZE integer CHARACTERS
MODULES

the

computer

[PROGRAM COLLATING SEQUENCE IS alphabet-name]

[SEGMENT-LIMIT IS segment-number]

6
DISPLAY IS DISPLAY -{7
9

Technical Notes

1. This paragraph is optional.

2. Computer-name must be one of

the

on

which the

following: PDP-10,

PDP-integer-1, DECsystem-10, or DECSYSTEM-20.

be a number in the range 1000

through

1099.

Integer-1 must

The number

specified is for documentary purposes only and has no direct
bearing on the object code generated by the compiler. 1If the
compiler was installed to take advantage of the KL central

processing wunit's Business 1Instruction
BIS-code will be generated automatically.

Installation Procedures.)

Set
(See the COBROL-74

(BIS), the

3. The optional MEMORY SIZE clause specifies the maximum memory
size of SORT's work area during a SORT operation. If the
MEMORY SIZE clause is omitted, 262,144 WORDS are assumed. If
it appears, the following ranges are applicable:

CHARACTERS Up to 1,572,864 (262,144 words x 6
characters/word)

WORDS Up to 262,144

MODULES Up to 256 (1 module eguals 1024
words)

COBOL-74 presently ignores the MEMORY SIZE clause. SORT will
use its default algorithms to determine the amount of memory

needed to execute a sort. (Refer to the

for more information.)

Version 12A 3-4

SORT User's Guide

January 1980

Example

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER (Cont.)

The PROGRAM COLLATING SEQUENCE clause specifies a collating
sequence for a program. When you use the PROGRAM COLLATING
SEQUENCE clause the collating sequence is the one associated
with alphabet-name. When vyou do not use the PROGRAM
COLLATING SEQUENCE clause the collating sequence is ASCII.
The program collating sequence determines:

1. The results of explicit comparisons in
relation-conditions and in condition-name conditions

2. The results of implicit comparisons in CONTROL clauses of
report description entries

3. The order of records processed by SORT and MERGE
statements which do not specify another collating
sequence with the COLLATING SEQUENCE phrase

4. The values of the figurative constants HIGH-VALUE and
LOW-VALUE

(See the alphabet-name IS clause in the SPECIAL-NAMES
paragraph for information on how to associate a collating
sequence with alphabet-name.)

If you use the SEGMENT-LIMIT clause, only those segments
having segment numbers from 0 up to but not including the
value of integer-3 are treated as resident segments of the
program. Integer-3 must be a positive integer in the range 1
to 49.

If you omit the SEGMENT-LIMIT clause, segments having segment
numbers from 0 through 49 are considered as resident segments
of the program (that is, SEGMENT-LIMIT IS 50 is assumed).
More on segmentation can be found in Sections 5.3 and 1l1l.1.

The DISPLAY clause is optional. If you include it in your
program, the compiler uses the DISPLAY type you specify as
the default in determining the recording mode for external
files and for items described 1in the Data Division as
DISPLAY. This allows you to change the default usage inside
the program without using compiler switches. The effect of
specifying DISPLAY IS DISPLAY-9 1is the same as that of
including a /X switch in the command string to the compiler.
However, the /X switch always overrides the DISPLAY clause.
For example, if vyou include in your program the following
statement

DISPLAY IS DISPLAY-7

all items described in the Data Division as USAGE IS DISPLAY
are considered DISPLAY-7 items.

OBJECT-COMPUTER. DECSYSTEM-1077

MEMORY 50000 WORDS

PROGRAM COLLATING SEQUENCE IS NATIVE
SEGMENT-LIMIT IS 35

DISPLAY IS DISPLAY-7.

THE ENVIRONMENT DIVISION
SPECIAL-NAMES

3.1.4 SPECIAL-NAMES

Function

The SPECIAL-NAMES paragraph provides a means of assigning mnemonic
names to input/output devices, code sets, and collating sequences.
This paragraph can also define the character used as a currency sign,

and can specify the interchange of decimal point and comma functions
in the program.

General Format
[SPECIAL NAMES. [CONSOLE IS mnemonic-name-1]
[CHANNEL (m) IS mnemonic-name-2]

[CHANNEL (n) IS mnemonic-name-3 ...]

(IS mnemonic-name-4 [(_)ﬁ STATUS IS condition-name—l]\—l
[0FF. STATUS IS condition-name-2]
ON STATUS IS condition-name-1

> b

[ore sTATUS 1S condition-name-2] -

OFF STATUS IS condition-name-2 ®

[on sTATUS 1S condition-name-1]

STANDARD-1
NATIVE

ASC
EBCD

LC
THROUGHY ,,
Htera]-lli{m } literal-2 }

alphabet-name IS ALSO literal-3 [ALSQ literal-4] ..

THROUGH Y
literal-5 {THR!! }”tera1-6
ALSO Titeral-7 [ALSO literal-8] ...

[Hteral-g 1S mnemonic-name-ll]

[CURRENCY SIGN 1S Titeral-10]

[DECIMAL POINT IS COMMA] ;]

Technical Notes
1. This paragraph is optional.
2. The reserved word CONSOLE refers to vyour terminal. The
assigned mnemonic-name can be used with the ACCEPT and

DISPLAY verbs in the Procedure Division to 1input data from
and output data to the terminal.

3-6) October 1985

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

The name CHANNEL refers to a channel on the line-printer
control tape. m and n represent any integer from 1 to 8 and
refer to any one of the eight channels on the tape. Control
tape channels can be referred to in the ADVANCING clause of
the WRITE verb in the Procedure Division to advance the paper
form to the desired channel position. (Refer to the Hardware
Reference Manual for a description of printer control
tapes.) For example, if the entry

CHANNEL (1) IS TOP-OF-PAGE

is included in this paragraph, the following procedure
statement prints the line and then skips to the top of the
next page.

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD
BEFORE ADVANCING TOP-OF-PAGE.

The alphabet-name IS clause associates a user-specified name
with a sequence of characters that can be used as a character
code set, a collating sequence, or both. This character
sequence can be either one of the two sequences provided by
the compiler or a sequence specified by you.

A character code set is specified by referencing
alphabet-name in the CODE-SET clause of a file description.
When defining a character code set, the alphabet-name IS
clause is restricted to STANDARD-1, NATIVE, ASCII, or EBCDIC.
A collating sequence is specified by referencing
alphabet-name either in the PROGRAM COLLATING SEQUENCE clause
of the OBJECT-COMPUTER paragraph or in the COLLATING SEQUENCE
phrase of a SORT or MERGE statement.

When STANDARD-1 or ASCII appears 1in an alphabet-name IS
clause, the character code set and collating sequence
specified is ASCII. When EBCDIC appears in an alphabet-name
IS «clause, the character code set and collating sequence
specified is EBCDIC.

When NATIVE appears, the character code set 1is ASCII.
However, 1if the DISPLAY mode specified is DISPLAY-9, the
character code set is EBCDIC.

When a literal phrase appears in an alphabet-name IS <clause,
the 1literals define an ascending collating sequence in the
order of their appearance in the phrase. Numeric literals
represent the ordinal number of the character within the
ASCII character set and must be in the range from 1 through
128. Nonnumeric 1literals in an alphabet-name IS clause
represent themselves. The ordinal number of an ASCII
character 1is 1 greater than its ASCII value. If the literal
contains multiple characters, they are assigned successive
ascending positions within the collating sequence, starting
with the leftmost character. Characters whose positions are
not explicitly defined by the literal phrase are assigned
positions higher than the specified characters and in their
normal ASCII sequence.

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

Example

When you specify the THROUGH phrase, the set of contiguous
ASCII characters beginning with the character specified by
literal-l and ending with the character specified by
literal-2' are assigned successive ascending positions in the
collating sequence. The characters specified by a THROUGH
phrase can be in either ascending or descending order.

When you specify the ALSO phrase, the characters specified by
literal-l, literal-3, literal-4, ..., are all assigned to the
same position in the collating sequence.

The character that has the highest ordinal position in the
program collating sequence is associated with the figurative
constant HIGH-VALUE for the character code set that vyou
specify. For example, in SIXBIT, the underscore (_) is
equivalent to HIGH-VALUES. 1If more than one character has
the highest position in the program collating sequence, the
last character specified is associated with the figurative
constant HIGH-VALUE.

The character that has the lowest ordinal position in the
program collating sequence specified is associated with the
figurative constant LOW-VALUE for the character code set that
you specify. For example, in SIXBIT, the space is equivalent
to LOW-VALUES. 1If more than one character has the lowest
position in the program collating sequence, the first
character specified 1is associated with the figurative
constant LOW-VALUE,

The clause literal-9 IS mnemonic-~name-4 specifies the CODE
value for a particular report (refer to the CODE clause in
Section 4.9.26). Literal-l must be an alphanumeric 1literal
enclosed in quotation marks, and can be from 1 through 129
characters in length.

If you use the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph, you must use the literal you specify (instead of
the $ character) in PICTURE clauses in the Data Division.
For instance, 1if you wish to insert a currency sign at the
front of a field which is to be printed on your report, you
must use the literal you specified - not the $ character - as
the editing symbol.

This literal is limited to a single printable character and
must not be one of the following characters:

digits @ through 9

alphabetic characters A, B, ¢, D, L, P, R, S, vV, X, Z

special characters * + - , . ; () " / =

If you use the DECIMAL-POINT IS COMMA clause, then the

functions of the comma and period are interchanged for all
PICTURE clauses and numeric literals.,

SPECIAL-NAMES. CONSOLE IS MYTERM

CHANNEL (1) IS TOP-OF-PAGE.

3-8 October 1985

THE ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

3.1.5 INPUT-OUTPUT SECTION

The Input-Output Section names the files and external media required
by the object program and provides information required for
transmitting and handling data during execution of the object program.
This section consists of the section header (INPUT-OUTPUT SECTION.)

followed by one or more of the following paragraphs:
FILE-CONTROL. (See Section 3.1.6)

I-0-CONTROL. (See Section 3.1.15)

Technical Notes
1. This section is optional.

2. All semicolons and commas are optional. Each SELECT
statement 1in the FILE-CONTROL paragraph must end with a
period. The entire entry in the I-O-CONTROL paragraph must

end with a period.

THE ENVIRONMENT DIVISION

FILE-CONTROL

3.1.6 FILE-CONTROL
Function
The FILE-CONTROL paragraph names each file, identifies the file

medium, and allows logical hardware assignments.

General Format

FORMAT 1:
SELECT [OPTIONAL] file-name

ASSIGN TO device-name-1 [device-name-2]

. AREA
[Bﬁiﬁﬂiﬁ integer-1 [AREAS]J

(ORGANIZATION IS SEQUENTIAL [CHECKPOINT QUTPUT]
[ACCESS MODE IS SEQUENTIAL]

— —

-

RECORDING | MODE IS [BYTE MODE]

>
w
tep}
—
—

(%]
—
><
Lo~}
—
—

o
et
=
>
wel
—<

<< M

STANDARD-ASCII
STANDARD ASCII

N
E
(e

DENSITY IS

co
(=}
o

EEE

(e}
N
o O
oo

[’%%%%;%%%%%%} IS data-name-1 [data-name-Z[data-name-3[data-name-4

[data-name-s [data-name—ﬁ [data-name-7[data-name-8]]]]]]]}

Version 12A 3-10 January 1980

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

FORMAT 2:
SELECT file-name
ASSIGN TO device-name-1 [device-name-2]

X AREA
[RESERVE integer-1 [AREAQ]}

ORGANIZATION IS RELATIVE [NITH CHECKPOINT OUTPUT'[EVERY integer-1 RECORDS]]

SEQUENTIAL RELATIVE KEY IS data-name-1

ACCESS MODE IS
- RANDOM
{DYNAMIC} RELATIVE KEY IS data-name-1
L. -
ASCII
SIXBIT

RECORDING | MODE IS<{ BINARY

L I

FILE-STATUS
L{FILE STATUS> IS data-name-1 [data-name-z [data-name-B [data-name-4

J<Im

[data-name-S [data-name-ﬁ [data-name-7 [data-name-8]]]]]]I]

MR-§-1254-81

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

FORMAT 3:

SELECT file-name
ASSIGN TO device-name-1 [device-name-2]

, AREA
[MM integer-1 [AREAS]:l

CHECKPOINT OUTPUT [EVERY integer-1 RECORDS]
ORGANIZATION IS [RMS] INDEXED | WITH {DEFERREQ SUTPUT

SE UENTIAL}

ACCESS MODE IS {RA DO
DYNAMIC

RECORD KEY IS data-name-1
[ALTERNATE RECORD KEY IS data-name-1 EWITH DUPLICATES]] cee

—

P

SCII

SIXBIT
RECORDING | MODE IS< BINARY

J<lm

L{%%%%:%%%%%gi IS data-name-1 [data-name-Z [data-name-3 [data-name-4

[data-name-s [data-name-G [data-name-7 [data-name-S]]]]]]]]

October 1985

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

Technical Notes

1.

This section is optional.

All semicolons and commas are optional. Each SELECT clause
must end with a period.

The SELECT and ASSIGN statements must appear before any other
clause shown, and the SELECT statement must precede the
ASSIGN statement. Every file described in the Data Division
must be named in a SELECT clause in the Environment Division.
Thus, the following clause must be specified for every such
file: SELECT file-name ASSIGN TO device=-name.

The individual clauses are described on the following pages
in the order shown above.

THE ENVIRONMENT DIVISION

SELECT

3.1.7 SELECT

Function

The SELECT statement names each file that is to be described in the
Data Division, and assigns each file to a particular device.

General Format

SELECT file-name

literal-1 »literal-2
ASSIGN TO device-name—1} [,device-name-Z] e

Technical Notes

1. Each file described in the Data Division must be named once
and only once as a file-name 1in a SELECT statement.
Conversely, each file named in a SELECT statement must have a
File Description entry in the Data Division. Each file-name
must be unique within a program.

2. The key word OPTIONAL is required for input files that are
not necessarily present each time the object program is run.
When your program tries to open a file which you have
declared to be OPTIONAL, the question IS file-name PRESENT?
is typed on the operator's console and the operator responds
with YES or NO. If the response is YES, the file is
processed normally; if the response is NO, the first READ
statement executed for that file will immediately take the AT
END or INVALID KEY path.

NOTE

ISAM files may not be optional. They must be present
at program start-up, even if only as dummy files.
(Refer to the COBOL-74 Usage Material, Part 3 of this
manual, for more information on ISAM.)

3. The ASSIGN clause specifies the device for a file.
Device-names can be either physical device-names or logical
device-names.

Physical device-names are fixed mnemonic-names that refer to
specific peripheral devices. When specified in an ASSIGN
clause, a physical device-name assigns the associated file to
that device. Physical device-names are described in the
TOPS-10 Operating System Commands Manual and the TOPS-20
User's Guide.

Version 12A 3-14 January 1980

THE ENVIRONMENT DIVISION

SELECT (Cont.)

Logical device-names are names created by the programmer.
They can contain up to six characters, and can consist of any
combination of letters and digits. At object execution time,
each 1logical device-name must be assigned to a physical
device by means of a monitor command (refer to the COBOL-74
Usage Material, Part 3 of this manual, for an explanation of
the commands).

4, Using a literal with the ASSIGN clause enables you to use
COBOL reserved words as legal device names. The literal name
must follow the same conventions as the device-name. The
literal name can contain up to six characters, and can
consist of any combination of letters and digits. At object
execution time, each name must be assigned to a physical
device by means of a monitor command (refer to the COBOL-74
Usage Material, Part 3 of this manual, for an explanation of
the commands).

5. You may assign more than one device to a file to avoid delay
when switching from one reel or unit to the next. When you
specify more than one device the object program automatically
uses the next device, in a cyclic manner, when an end-of-reel
condition is detected. This applies only to tape devices and
SORT and ISAM files, and it is unconditional for tapes. For
SORT/MERGE, any number of devices may be assigned. If the
disks are specified generically, SORT/MERGE will use its
internal algorithm to determine which physical devices to
use. Otherwise, all devices specified will be used in a
round-robin fashion. For ISAM files you may assign not more
than two devices.

6. If the access mode is INDEXED and two devices are assigned,
the first device is assumed to contain the index portion of
the file and the second to contain the data portion of the
file. If one device is specified, it is assumed to contain
both the index portion and the data portion of the file.

7. For ISAM and random files, the devices must be random-access.

Examples
SELECT INFIL ASSIGN TO MTAl.

SELECT SRTFIL ASSIGN TO DSK, DSK, DSK.

Version 12A 3-15 January 1980

RESERVE

3.1.8 RES

Function

THE ENVIRONMENT DIVISION

ERVE

The RESERVE clause allows you to specify the actual number of
input/output buffer areas for the compiler to allocate to this file.

General Format

RES

Technical

1.

Example

. AREA
ERVE integer-1 [:AREAé]

Notes

If you specified the organization for this file as RELATIVE
or INDEXED, this clause is ignored and only one buffer area
is assigned.

If you did not specify RELATIVE or INDEXED organization, the
integer specifies the number of buffer areas for the compiler
to assign.

If you omit this clause for a sequential file, two areas will
be assigned.

You can specify a maximum of 62 areas for integer-1.
However, the optimal number of areas you can specify is
between 5 and 10. If you specify the number of areas to be
greater than 62, a warning message is generated. If you
specify a large (but legal) number of areas, you might run
out of available memory. Specifying a large number of areas
might also cause your program to run more slowly, since vyour
program will be that much bigger.

SELECT INFIL ASSIGN TO DSK

RESERVE 1 AREA.

3-16 January 1980

THE ENVIRONMENT DIVISION

ORGANIZATION

3.1.9 ORGANIZATION

Function

The ORGANIZATION clause specifies the way in which a file will be

accessed.

General Format

ORGANIZATION IS

[ggdﬁﬂé“ [CHECKPOINT]il

DEFERRED
INDEXED [lCHECKPOINT; OUTPUT]

Technical Notes

1.

The ORGANIZATION clause 1is required for relative and
indexed-sequential files. It is ignored for sequential
files.

If ORGANIZATION IS SEQUENTIAL and the file 1is on a
random-access device, records are obtained or placed
sequentially. That is, the next 1logical record 1is made
available from the file on a READ statement execution, and an
output record is placed into the next available area on a
WRITE statement execution. Thus sequential-access processing
on a random-access device 1is functionally similar to the
processing of a magnetic tape file.

If ORGANIZATION IS RELATIVE, the contents of the data item
associated with the RELATIVE KEY specifies which record,
relative to the beginning of the file, is made available by a
READ statement, or where the record is to be placed by a
WRITE statement, or which record is to be deleted by a DELETE
statement, or which record will be replaced by a REWRITE
statement.

If ORGANIZATION IS INDEXED, the contents of the data item
associated with the RECORD KEY specifies which record is made
available by a READ statement, or where the record is to be
placed by a WRITE statement, or which record is to be deleted
by a DELETE statement, or which record will be replaced by a
REWRITE statement.

The DEFERRED OUTPUT option of the ORGANIZATION IS INDEXED
clause causes the object-time system to output a block of an
indexed-sequential file only when another block must be
brought into memory. Normally, to ensure integrity for the
file, a block is output every time a record is written, even
if records are written successively in the same block. When
a file is opened for simultaneous update, the DEFERRED OUTPUT
clause 1is ignored. Refer to the OPEN statement, Section
5.9.25.

3-17 January 1980

THE ENVIRONMENT DIVISION

ORGANIZATION (Cont.)

Example

If you are using ISAM files sequentially, DEFERRED OUTPUT
provides the advantage of running faster. However, your file
is also more easily damaged if the system crashes. Thus, its
use is advantageous if file integrity is not important.

If you use the ORGANIZATION IS INDEXED clause, you may also
specify the CHECKPOINT OUTPUT option (instead of DEFERRED
OUTPUT). If you specify this option, the object-time system
will force the buffers to be written out, and all pointers
internal to the file to be updated, after every WRITE
statement. This will naturally make your program run much
more slowly. However, it will also safequard your file
against system crashes, since the file will have been updated
after the last WRITE before the crash.

SELECT INFIL ASSIGN TO DSK, DSK

ORGANIZATION IS INDEXED DEFERRED OUTPUT.

3.1.10

Function

THE ENVIRONMENT DIVISION

ACCESS MODE

ACCESS MODE

The ACCESS MODE clause specifies the method used to access the file in

question.

General Format

SEQUENTIAL
ACCESS MODE IS RANDOM

DYNAMIC

MR-5-1259-81

Technical Notes

1.

Example

If you do not specify the ACCESS MODE clause, ACCESS MODE IS
SEQUENTIAL is assumed regardless of the organization of the
file.

If you specify ACCESS MODE IS DYNAMIC you can access the file
either sequentially or randomly.

When you specify ACCESS MODE IS SEQUENTIAL, the records in
your - file are accessed in the sequence dictated by the file
organization. Sequential files are accessed in the same
order they are added to the file. Relative files are
accessed in ascending relative record number order. Indexed
files are accessed in ascending record key order.

If you specify ACCESS MODE IS RANDOM, the RELATIVE KEY (for
relative files) or the RECORD KEY (for indexed files)
indicates the record to be accessed.

If integer-1 is zero, or if you do not specify the EVERY
integer-1 RECORDS clause, the checkpointing actions occurs
after every physical write.

SELECT INFILE ASSIGN TO DSK

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS RECKEY.

3-19

THE ENVIRONMENT DIVISION

RECORD KEY

3.1.11 RECORD KEY

Function

The RECORD KEY clause specifies the record in an 1indexed-sequential
file that is to be read, written, deleted, or rewritten.

General Format

RECORD KEY IS data-name-1

MR-5-1260-81

Technical Notes

l.

Example

The RECORD KEY clause 1is wvalid only for files whose
organization is INDEXED; it must be specified for those files
(refer to the READ statement, Section 5.9.27).

You must define the RECORD KEY data-name as an item in the
record area of the file to which it pertains. Though the
RECORD KEY is described in only one of the records, it |is
assumed to occupy the same position in all records for that
file.

If the file for which you are specifying the RECORD KEY
clause is to be accessed through RMS (that is, if the file is
a multi-key ISAM file), the RECORD KEY data item cannot be
longer than 255 characters. The data item must also be in
some DISPLAY format; DISPLAY~6, DISPLAY-7, or DISPLAY-9 are
legal, but no COMPUTATIONAL formats are legal.

The RECORD KEY is required to describe the location 1in the
record area of the key for the file. The contents of the
RECORD KEY data-item must be unique for each record in the
file and cannot be equal to LOW-VALUES. However, when the
RECORD KEY is equal to LOW-VALUES, the results of a READ,
WRITE, REWRITE, and DELETE are unpredictable.

SELECT INFIL ASSIGN TO DSK, DSK

ORGANIZATION IS INDEXED
RECORD KEY IS RECKEY,

3-20 October 1985

THE ENVIRONMENT DIVISION
ALTERNATE RECORD KEY

3.1.12 ALTERNATE RECORD KEY
Function

The ALTERNATE RECORD KEY clause specifies secondary keys that can be
used with multi-key indexed files. These files are accessed through
RMS. See Appendix I, Using RMS Indexed Files, for more information on
RMS files.

General Format

[ALTERNATE RECORD KEY IS data-name-1 [WITH pupLICATES]] ...

Technical Notes

1. The ALTERNATE RECORD KEY clause is valid only for
indexed-sequential files that are accessed through RMS.

2. You must define the ALTERNATE RECORD KEY data-name as an item
in the record area of the file to which it pertains. Though
the ALTERNATE RECORD KEY is described in only one of the
records, it 1is assumed to occupy the same position in all
records for that file.

3. No key specified with the ALTERNATE RECORD KEY clause can be
larger than 255 characters,

4, All alternate key data items must be in one of the DISPLAY
formats. DISPLAY-6, DISPLAY-7, and DISPLAY-9 are legal, but
no COMPUTATIONAL formats are legal.

5. You can specify up to 255 different ALTERNATE RECORD KEYs for
each file. If more than one alternate key is to be used, an
additional ALTERNATE RECORD KEY clause must be specified for
each alternate key.

6. Keys specified with the ALTERNATE RECORD KEY syntax must have
the same data format (as defined in the USAGE clause) as the
record of which they are a part. However, variable-length
keys are not allowed.

7. Files with ALTERNATE RECORD KEYs can not be opened for
simultaneous update.

8. A KL or KS CPU is required for the use of RMS files.

3-21 October 1985

THE ENVIRONMENT DIVISION

RELATIVE KEY

3.1.13 RELATIVE KEY

Function

The RELATIVE KEY clause specifies which record is read or written in a

relative

file.

General Format

RELATIVE KEY IS data-name-1

MR-S-1262-81

Technical Notes

1.

Example

The RELATIVE KEY clause is valid only for a file whose
organization is RELATIVE; it must be specified for this type
of file. This clause cannot be used for a file whose
organization is INDEXED or SEQUENTIAL.

The RELATIVE KEY data-name must be defined in the Data
Division as a COMPUTATIONAL item of ten or fewer digits. The
PICTURE can contain only the character 9 or its equivalent,
for example 9(10).

SELECT INFIL ASSIGN TO DSK

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY.

3-22

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY

3.1.14 RECORDING MODE/DENSITY/PARITY
Function
The RECORDING MODE clause specifies the recording mode, tape density,
and parity for a magnetic tape file.
General Format
[ASCI]I]
SIXBIT
BINAR
RECORDING [MODE IS [BYTE MODE] F
v
STANDARD-ASCI
STANDARD ASCI
200
556
DENSITY IS { 800 PARITY 1s | 20D
EVEN
1600
6250
Technical Notes T nsamsst
1. The RECORDING MODE clause allows you to record data on the
device in a format other than that used in memory. The
following recording modes are acceptable.

ASCII - The file is read/written as ASCII records, five
7-bit characters per 36-bit word. Bit 35 (the
rightmost bit) is ignored.

SIXBIT - The file is read/written as SIXBIT records, six
6-bit characters per 36-bit word with record
headers.

BINARY - The file is read/written as binary records, 36 bits
per word.

F - The file 1is read/written as fixed-length EBCDIC
records, four 9-bit characters per 36-bit word.
However, for industry-compatible magnetic tape
(9-track, with at least 800 bpi density), the file
is read/written with four 8-bit characters per

36-bit word. If more than one record description is
given in the FD entry, the record length must be the
same for all of them.

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

v

~ The file is read/written as variable-length EBCDIC
records, four 9-bit characters per 36-bit word with
record and block headers. However, for
industry-compatible magnetic tape (9-track, with at
least 800 bpi density), the file is read/written
with four 8-bit characters per 36-bit word. If a
file whose recording mode is V is open for
INPUT-OUTPUT and you overwrite a record, the record
being written must be the same size as the
overwritten record. A file whose recording mode is
V cannot be opened for simultaneous update.

STANDARD-ASCII (STANDARD ASCII)

The five 7-bit bytes in each word in memory are
transferred to five 8-bit bytes on the tape and bit
35 is stored in bit @ of the fifth byte on tape.
The character set and the character encodings are
the same as those of ASCII recording mode. This
enables interchanges with other manufacturers' ASCII
data files. This .recording mode 1is wvalid for
magnetic tape only.

The format of records for each recording mode is given in
Sections 8.1 and 8.2 of this manual.

The recording mode of a file is determined by a number of
factors besides the recording mode specified in the RECORDING
MODE clause. These factors are:

Qs

If the device can only accept ASCII data (for example, a
line printer), the object-time system always uses ASCII
as the recording mode no matter what recording mode is
specified.

If the ADVANCING or POSITIONING clause is included in the
WRITE statement, the object-time system uses the
recording mode specified. If no recording mode is
specified, ASCII is the default.

If the file descriptor (FD) has a REPORT clause, the
object-time system always uses ASCII as the recording
mode no matter what recording mode is specified.

The recording mode specified in the RECORDING MODE clause
is compared to the USAGE clause for the record. The
recording mode is determined in the following sequence:

1. The recording mode that is specified is used.

2. If the recording mode is not specified, the default
recording mode depends on the usage mode that is
specified.

3. If neither the recording mode nor the usage mode is

specified, the default recording mode depends on the
display mode.

3-24 October 1985

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

Table 3-1
Recording Modes
RECORDING MODE USAGE RECORDING MODE
Clause Clause Actually Used
none DISPLAY—G SIXBIT
none DISPLAY-7 ASCII
none DISPLAY-9 EBCDIC
none none SIXBIT (no /X)
none none EBCDIC (/X)
SIXBIT DISPLAY-6 SIXBIT
SIXBIT DISPLAY-7 SIXBIT
SIXBIT DISPLAY-9 SIXBIT
ASCII DISPLAY-6 ASCII
ASCII DISPLAY-7 ASCII
ASCII DISPLAY-9 ASCII
F or V DISPLAY-6 EBCDIC
F or V DISPLAY-7 EBCDIC
ForV DISPLAY-9 EBCDIC
BINARY DISPLAY~6 BINARY
BINARY DISPLAY-7 BINARY
BINARY DISPLAY-9 BINARY
NOTE
The object-time system automatically
makes the conversions necessary to have
the recording mode conform to the usage
mode of the records. (These conversions
may cause your program to run more
slowly.)

3-25

THE ENVIRONMENT DIVISION

FILE STATUS

3.1.14 FILE STATUS

Function

The FILE STATUS clause specifies data~items into which the object-time
system places values when an I/O error or warning message occurs on
the file specified by the SELECT clause. A user-written USE procedure
may then examine and alter these values as part of a recovery process.

General Format

r— ———

{E%E%:%%%%ﬁg} IS data-name-1 data-name-2 data-name-3 data-name-4

data-name-5 [}ata-name-ﬁ [}ata—name—7 [bata—name-s:[lj}

Technical Notes

1. Data-name-1 is required if you specify this clause, but
data-name-2 through data-name-8 are optional. If you specify
fewer than eight data-names, the compiler assumes that the
data-names are specified starting with data-name-1 and
continuing in order. Therefore, if you wish to specify
data-name-8, you must also specify data-name-1 through
data-name-7.

3-26

3.1.15

THE ENVIRONMENT DIVISION

FILE STATUS

FILE STATUS

Function

The FILE STATUS clause specifies data-items into which the object-time

system

places values when an I/O error or warning message OCCuUrsS on

the file specified by the SELECT clause. A user-written USE procedure
can then examine and alter these values as part of a recovery process.

General

{FILE-S

FILE STATUS

Format

TATUS} IS data-name-1 data-name-2 data-name-3 data-name-4

data-name-5 [}ata-name-G [}ata-name-7 [@ata-name-Sjj[lJ

MR-S-1264-81

Technical Notes

1.

Data-name-1 is required if you specify this clause, but
data-name-2 through data-name-8 are optional. If you specify
fewer than eight data-names, the compiler assumes that the
data-names are specified starting with data-name-1 and
continuing in order. Therefore, if you wish to specify
data-name-8, you must also specify data-name-1l through

data-name-7.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

2.

You must define the data-names in the Working Storage Section
of the Data Division in the following form.

data-name-1 PIC 9(2).
data-name-2 PIC 9(19).
data-name-3 USAGE INDEX,
data-name-4 PIC X(9).
data-name-5 USAGE INDEX.
data-name-6 USAGE INDEX.
data-name-7 PIC X (39).
data-name-8 USAGE INDEX.

After a fatal I/0 error, the FILE STATUS items contain the
following values.

data-name-1 contains the file status.

data-name-2 contains a 10-digit error number.

data-name-3 contains the action code, which is set to zero.
data-name-4 contains the VALUE OF ID.

data~-name-5 contains the current block number.

data-name-6 contains the current record number.

data-name-7 contains the file name.

data-name-8 contains the file-table pointer.

The file status, which is stored in data-name-1l, is set to one of the
following 2-character codes.

oo
10

21
22

23

24
30
34

The I/0 was successful.

No next logical record; that is, there is no next record Iin
the file. The AT END path is taken.

Sequence error, primary key has changed; the prime record key
value has been changed by the program.

Duplicate key; that is, an attempt was made to write a record
into a record position that is already occupied. The INVALID
KEY path is taken.

No record found on READ, REWRITE, DELETE; that 1is, when an
indexed-sequential file was accessed, an empty record
position was found. The INVALID KEY path is taken.

Boundary violation, that is, the random file's actual key
violated the file limits. The INVALID KEY path is taken.
Permanent error; that is, a successful hardware operation
cannot be done without a hardware error signal.

Permanent error; that is, more space on the media cannot be
obtained to extend the file for output operations.

The l@-character error number stored in data-name-2 has the form:

ABCDEFGHIJ

where the code has the meanings shown below.

AB contains a value indicating the COBOL verb that caused the error.

OO bdbwWwNHFHE

No COBOL verb error
OPEN

CLOSE

WRITE

REWRITE

DELETE

READ

RETAIN

OPEN EXTEND

3-28 October 1985

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

21 FILE CANNOT BE CLOSED
THE CLOSE "REEL" OPTION MAY NOT BE USED WITH A
MULTI-FILE-TAPE

22 FILE IS NOT OPEN FOR OUTPUT

23 ZERO LENGTH RECORDS ARE ILLEGAL
FILE CANNOT DO OUTPUT

24 "AT END" PATH HAS BEEN TAKEN
FILE CANNOT DO INPUT

25 ENCOUNTERED AN "EOF" IN THE MIDDLE OF A RECORD
FILE CANNOT DO INPUT

26 RECORD-SEQUENCE-NUMBER n SHOULD BE m
FILE CANNOT DO INPUT

27 file-name ON device-name SHOULD BE REORGANIZED, THE TOP INDEX
BLOCK WAS JUST SPLIT

28 NOT USED

29 EITHER THE ISAM FILE DOES NOT EXIST OR THE VALUE OF 1ID
CHANGED DURING THE PROGRAM

30 ATTEMPT TO DO I/O FROM A SUBROUTINE CALLED BY A NON RESIDENT
SUBROUTINE. FILE CANNOT BE OPENED

31 1I/0 CANNOT BE DONE FROM AN OVERLAY. FILE CANNOT BE OPENED

32 READ AN "EOF" INSTEAD OF A LABEL

33 CLOSE REEL IS LEGAL ONLY FOR MAGNETIC TAPE

34 FILE IS NOT OPEN FOR INPUT

35 NOT ENOUGH FREE MEMORY BETWEEN .JBFF AND OVERLAY AREA

36 INSUFFICIENT MEMORY WHILE ATTEMPTING TO SPLIT THE TOP INDEX
BLOCK

37 STANDARD ASCII RECORDING MODE AND DENSITY OF 1600 BPI REQUIRE
THE DEVICE TO BE A TU70

38 TAPOP. FAILED - UNABLE TO SET STANDARD-ASCII MODE

39 GOT AN EOF IN MIDDLE OF BLOCK/RECORD DESCRIPTOR WORD

40 BLOCK DESCRIPTOR WORD BYTE COUNT IS LESS THAN FIVE

41 ERROR - GOT ANOTHER BUFFER INSTEAD OF "EOF"

42 ERROR - RECORD EXTENDS BEYOND THE END OF THE LOGICAL BLOCK

43 IT IS ILLEGAL TO CHANGE THE RECORD SIZE OF AN EBCDIC 'I/O
RECORD

44 THE TWO LOW-ORDER BYTES OF A BLOCK/RECORD DESCRIPTOR WORD
MUST BE ZERO

If CD is set to 1 or 2, HIJ contains the number of an I/O error status
bit. The I/0 error status bits, their mnemonics, and their meanings,
are shown in Table 3-2.

THE ENVIRONMENT DIVISION

Table 3-2

Monitor File Status Bits

Meaning

FILE STATUS (Cont.)
Bit Mnemonic
18 I0.IMP
19 IO0.DER
20 I0.DTE
21 I0.BKT
22 I0.EOF
23 IO.ACT
29 I0.WHD
30 IO.SYN
31 I0.UWC

32-35 I0.MOD

Improper Mode. Attempt to write on a
software write-locked file structure, or a
software redundancy failure occurred. This
bit 1is usually set by the monitor. The
user cannot set this bit.

Hardware device error. The disk unit is in
error, rather than the data on the disk.
However, data read into memory or written
on the disk is probably incorrect. The
user does not usually set this bit.

Hard data error. The data read or written
has incorrect parity as detected by the
hardware. The wuser's data 1is probably
unrecoverable even after the device has
been fixed. This bit is usually not set by
the user.

Block too large. A disk data block is too
large to fit into the buffer; or a block
number is too large for the disk unit; or
DSK has been filled; or the user's quota
on the file structure has been exceeded.
This bit 1is usually not set by the user.
This error is also returned when the user
tries to <close a file that has open locks
associated with it (via Engueue/Dequeue).

End-of-file. The user program has
requested data beyond the last block of the
file with an IN or INPUT call; or USETI
has specified a block beyond the last data
block of the file. When IO.EOF is set, no
data has been read into the buffer. This
bit is usually not set by the user.

I/0 Active. The disk is actively
transmitting or receiving data. This bit
is always set by the monitor for its own
use.

Write disk-pack headers. This is used in
conjunction with the SUSET. monitor call to
format a disk pack. (Not used in COBOL)

Synchronous mode 1I/0. Stop disk after
every buffer is read or written. (Not used
in COBOL)

User word count, supplied by the wuser in
each buffer.

Data mode of the device.

3-30

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

For the file status for each device, refer to the Monitor Calls
Manual.

If CD is set to 3, 4, 5, or 7, HIJ contains the error code for LOOKUP,
ENTER, RENAME, or FILOP errors. Table 3-3 gives these codes and their
meanings.

Table 3-3
Monitor Error Codes

Code Explanation

0 File not found, illegal filename (0,%*),
filenames do not match, or RENAME after a LOOKUP
failed.

1 UFD does not exist on specified file structures.
(Incorrect project-programmer number)

2 Protection failure or directory full on DTA.

3 File being modified.

4 Filename already exists (RENAME) or filename is

different (ENTER after LOOKUP) or requested
supersede (on a non-superseding ENTER).

5 Illegal sequence of UUOs (RENAME with neither
LOOKUP nor ENTER, or LOOKUP after ENTER).

6 1. Transmission, device, or data error.

2. Hardware-detected device or data error
detected while reading the UFD RIB or UFD
data block.

3. Software-detected data inconsistency error
detected while reading the UFD RIB or file

RIB.

7 Not a saved file. (Not expected to occur)

10 Not enough memory.

11 Device not available.

12 No such device.

13 No 2-register relocation capability. (Not
expected to occur)

14 No room on this file structure .or quota exceeded
(overdrawn quota not considered).

15 Write-lock error. Cannot write on file
structure.

16 Not enough table space 1in free memory of
monitor.

3-31

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

Table 3-3 (Cont.)
Monitor Error Codes

Code Explanation

17 Partial allocation only.

20 Block not free on allocated position.

21 Cannot supersede an existing directory.

22 Cannot delete a nonempty directory. (Not
expected to occur)

23 Subdirectory not found (some SFD in the
specified path was not found).

24 Search list empty (LOOKUP or ENTER was performed
on generic device DSK and the search list is
empty) .

25 Cannot create a SFD nested deeper than the
maximum allowed level of nesting. (Not expected
to occur)

26 No file structure in the job's search 1list has

both the no-create bit and the write-lock bit
equal to zero and has the UFD or SFD specified
by the default or explicit path (ENTER on
generic device DSK only).

27 GETSEG from a locked 1low segment to a high
segment which is not a dormant, active, or idle
segment. (Segment not on the swapping space)
(Not expected to occur)

30 Cannot update file.

31 Low segment overlaps high segment. (Not
expected to occur)

32 Not logged in. (Not expected to occur)

4. The FILE STATUS items are the paths of communications between
the object-time system and a USE procedure. A USE procedure
specifies a recovery process executed when an error or
warning occurs during an I/0 operation. A USE procedure
determines the error or warning type from the error-number
placed into data-name-2 by the object-time system. Control
returns to the object-time system at the conclusion of the
USE procedure. The object-time system action is determined
by the error number and by the contents of the action-code
placed into data-name-3 by the USE procedure. If the
action-code is set to 1, the object-time system ignores the
error and continues the run. If the action-code is left set

3-32

Example

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

to 0, the object-time system 1issues an error message and
terminates the run. If the error-number is 17, the
object-time system continues the run independent of the
action-code setting. If the action-code is not 0 or 1, the
object-time system action is undefined.

When the program comes to a normal termination and . you have
requested (by loading a "1" into the action-code) that errors
be ignored, the object-time system issues the following
message:

%n ERRORS IGNORED

Refer to the USE statement in Section 5.9.42 for details of
writing USE procedures.

If you did not specify the FILE STATUS statement, I/O error
recovery processing cannot be performed. If you specify the
FILE STATUS statement with only data-name-1 included, you can
examine the status of the file, but you cannot specify that
the object~time system ignore the error because you cannot
set the action code (data-name-3). You also cannot examine
the error number (data-name-2).

SELECT INFIL ASSIGN DSK, DSK

ORGANIZATION IS INDEXED

ACCESS MODE IS RANDOM

RECORD KEY IS RECKEY

RECORDING MODE IS ASCII

FILE STATUS IS FILSTAT, ERRNUM, ACTCODE, VID,
BLKNUM, RECNUM, FILNAM, FILPNTR.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 FILSTAT PIC 9(2).

77 ERRNUM PIC 9(10).
77 ACTCODE INDEX.

77 VID PIC X(9).

77 BLKNUM INDEX.

77 RECNUM INDEX.

77 FILNAM PIC X(30).
77 FILPNTR INDEX.

3-33

THE ENVIRONMENT DIVISION

I-O-CONTROL

3.1.15

Function

I-0O-CONTROL

The I-O-CONTROL paragraph specifies the points at which a RERUN DUMP
is to be performed, the memory area that is to be shared by different
files, and the location of files on a multiple-file reel.

General Format

[:I—O-CONTROL.

-

[}11

RERUN EVERY ‘E-NQOF { T} OF file-name-1
— RECORDS

integer-1 R

SORT AREA FOR file-name-2 { file-name-3 }

MULTIPLE FILE TAPE CONTAINS file-name-4 [:POSITION integer-Bj]

e-name-5 [:POSITION integer-{:I}:] . :J

Technical Notes

1.

2.

This paragraph is optional.

The RERUN clause specifies when a rerun dump 1is to be
performed.

The dump is always written onto a disk file, using the
program's low segment name as the filename, and an extension
of CKP. 1If the program has no filename because it was never
saved, the program name (from the PROGRAM-ID paragraph in the
Identification Division) is used as a filename, with the
extension CKP.

If you use the END OF UNIT option, a rerun dump is taken at
the end of each input or output reel of the specified REEL
file.

If you use the integer-1 RECORDS option, a rerun dump is
taken whenever a number of 1logical records equal to a
multiple of integer-l1l is either read or written for the file.

3-34

Example

THE ENVIRONMENT DIVISION

I-O-CONTROL (Cont.)

A rerun dump 1is not taken if any files are open for
input/output (updating), or if any file is open on a device
other than magnetic tape, disk, line printer, or terminal, or
if an indexed-sequential (ISAM) file is open. Therefore, do
not attempt to have a rerun dump taken while a sort 1is in
progress. Also, RERUN cannot be used if overlays are used or
if files are open for simultaneous update.

The SAME AREA clause specifies that two or more files are to
use the same area during processing; this overlapping
applies to all buffer areas and the record area. However,
unless the RECORD option is used, only one of the named files
can be open at one time.

If you specify the RECORD option, the files share only the
record area (that is, the area in which the current logical
record is processed). All of the files mentioned in the SAME
RECORD AREA clause may be open at the same time. A logical
record in the SAME RECORD AREA is considered to be a 1logical
record of each opened output file whose name appears in the
SAME RECORD AREA clause, as well as the most recently read
input file whose name is specified. Since the various
DISPLAY usages are represented differently in memory, you
must keep track of the usage of the record in the SAME RECORD
AREA. You may use the record in any way you would otherwise
use it. However, you must be sure that you have a record of
the expected usage in the SAME RECORD AREA. If, for example,
you plan to wuse a DISPLAY-7 record in your processing, you
must have a DISPLAY-7 record in the SAME RECORD AREA, not a
DISPLAY-6 record. You will not get an error message if you
attempt to use a DISPLAY-6 record as if it were DISPLAY-7.

The SORT option is used for sort files. However, this option
need not be specified because all sort files always use the
same sort area.

The MULTIPLE FILE clause is required when several files share
the same physical reel of tape. This clause is invalid for
media other than magnetic tape.

Regardless of the number of files on a single reel, only
those files defined in the program may be listed. If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, integer-3, and so forth, specify the position of
the file relative to the beginning of the tape. All files on
the same reel of tape must be ASSIGNed to the same device in
the FILE-CONTROL paragraph.

No more than one file on the same reel of tape can be open at
one time.

I-0-CONTROL.

RERUN EVERY 300 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

3-35

THIS PAGE INTENTIONALLY LEFT BLANK.

3.1.16

Function

THE ENVIRONMENT DIVISION

I-O-CONTROL

I-O0-CONTROL

The I-O-CONTROL paragraph specifies the points at which a RERUN DUMP

is to b
files, a

e performed, the memory area that is to be shared by different
nd the location of files on a multiple-file reel.

General Format
[:I-O-CONTROL.

S

K

Technica
1.
2.

RERUN EVERY

L

{REE'} I
-_— UNIT - OF file-name-1
2ECORDS j)

integer-1 R

RECORD
SORT AREA FOR file-name-2 { file-name-3 }

SORT-MERGE

MULTIPLE FILE TAPE CONTAINS file-name-4 [jPOSITION integer-3j]

le-name-5 [:POSITION 1nteger-{:I]:]

1 Notes
This paragraph is optional. MA-S-126581
The RERUN clause specifies when a rerun dump is to be

performed.

The dump is always written onto a disk file, using the
program's low segment name as the filename, and an extension
of CKP. If the program has no filename because it was never
saved, the program name (from the PROGRAM-~ID paragraph in the
Identification Division) is used as a filename, with the
extension CKP.

If you use the END OF UNIT option, a rerun dump is taken at
the end of each input or output reel of the specified REEL
file.

If you use the integer-1 RECORDS option, a rerun dump is
taken whenever a number of logical records equal to a
multiple of integer-1 is either read or written for the file.

A rerun dump is not taken 1if any files are open for
input/output (updating), or if any file is open on a device
other than magnetic tape, disk, line printer, or terminal.
Therefore, do not attempt to have a rerun dump taken while a
sort is in progress. Also, RERUN cannot be used if overlays
are used or if files are open for simultaneous update.

3-37

THE ENVIRONMENT DIVISION

I-O-CONTROL (Cont.)

3.

Example

The SAME AREA clause specifies that two or more files are to
use the same area during processing; this overlapping applies
to all buffer areas and the record area. However, unless the
RECORD option 1is used, only one of the named files can be
open at one time.

If you specify the RECORD option, the files share only the
record area (that is, the area in which the current logical
record is processed). All of the files mentioned in the SAME
RECORD AREA clause can be open at the same time., A logical
record in the SAME RECORD AREA is considered to be a 1logical
record of each opened output file whose name appears in the
SAME RECORD AREA clause, as well as the most recently Tread
input file whose name is specified. Since the various
DISPLAY usages are represented differently in memory, you
must keep track of the usage of the record in the SAME RECORD
AREA, You can use the record in any way you would otherwise
use it. However, you must be sure that you have a record of
the expected usage in the SAME RECORD AREA. If, for example,
you plan to use a DISPLAY-7 record in your processing, you
must have a DISPLAY-7 record in the SAME RECORD AREA, not a
DISPLAY-6 record. You 'do not get an error messade if you
attempt to use a DISPLAY-6 record as if it were DISPLAY-7.

The SORT and SORT-MERGE options are used for sort and merge
files. However, these options need not be specified because
all sort and merge files always use the same area.

The MULTIPLE FILE clause is required when several files share
the same physical reel of tape with a uniform labeling
convention. This clause is 1invalid for media other than
magnetic tape, and cannot be specified for a sort or merge
file. 1In addition, this clause is invalid for monitor tape
labeling (with ANSI) and does not work for COBOL labels.

Regardless of the number of files on a single reel, only
those files defined 1in the program can be listed. 1If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, 1integer-3, and so forth, specify the position of
the file relative to the beginning of the tape. All files on
the same reel of tape must be ASSIGNed to the same device in
the FILE-CONTROL paragraph.

Each file in a series of files sharing the same physical reel
of tape, must be created with a uniform labeling convention,

Files used for SORT or MERGE cannot be specified in the
MULTIPLE FILE TAPE clause,

No more than one file on the same reel of tape can be open at
one time,

I-@-CONTROL.

RERUN EVERY 309 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

3-38 October 1985

THE ENVIRONMENT DIVISION

THE ENVIRONMENT DIVISION

3-39

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [NITH DEBUGGING MODE]

OBJECT-COMPUTER. computer-name

WORDS
MEMORY SIZE integer ¢ CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS a]phabet-name]

[SEGMENT-LIMIT IS segment-number]

SPECIAL-NAMES. [CONSOLE 1S mnemonic-name-1]
[ggggggg (m) IS mnemonic-name-?]
[gﬂggmgg (n) IS mnemonic-name-3 ...]
(IS mnemonic-name-4 [gﬁ_ STATUS IS condition-name-l]\

[0FF sTATUS IS condition-name-2 |
ON STATUS IS condition-name-1

SWITCH(m) >
[0FF STATUS 1S condition-name-2]
OFF STATUS IS condition-name-2
[on STATUS IS condition-name-1]
B : /|
- j—
STANDARD-1
NATIVE
alphabet-name IS ASCIT
EBCDIC
[STHROUGHU .. 7
=e——0 literal-2
literal-1 {IERQ }

[ALSO Titeral-3 [ALSO Viteral-4]

™ (THROUGH) - .
{Tﬁﬁﬁ"‘} literal-6

literal-5
| ALSO 1iteral-7 [ALSO literal-8]

I ALSO ALSO -]

[1itera]-9 IS mnemonic-name-4}

[CURRENCY SIGN IS 1iteral-10]
[

DECIMAL-POINT IS COMMA]]

3-49 October 1985

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR FILE CONTROL STATEMENT
FORMAT 2:

SELECT [OPTIONAL] file-name

ASSIGN TO device-name-1 [device-name-2]

. AREA
[RESERVE integer-1 [AREAS]]

ORGANIZATION IS RELATIVE [WITH CHECKPOQINT OUTPUT [EVERY integer-1 RECORDS]]

[SEQUENTIAL ~ [RELATIVE KEY IS data-name-1]]

ACCESS MODE IS RANDOM
RELATIVE KEY IS data-name-1
DYNAMIC
ASCII
SIXBIT
RECORDING | MODE IS{ BINARY
F
v

[{%%E%:%¥%%%%} IS data-name-1 [data-name-Z [data-name-3 [data-name—4

[data-name-s [data-name-6 [data-name—7 [data—name-SJIH]]]]

MR-S-1269-81

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR FILE CONTROL STATEMENT

FORMAT 3:
SELECT file-name

ASSIGN TO device-name-1 [device-name-2]

, AREA
[RESERVE integer-1 [AREAS]

CHE
DEFE

ORGANIZATION IS [RMS] INDEXED [WITH {

iz
m
()
AT/

POINT OUTPUT [EVERY integer-1 RECORDS]}
RED OUTPUT

SEQUENTIAL
ACCESS MODE IS < RANDOM
DYNAMIC

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-1 [WITH DUPLICATES]] .-

-]
‘ASCI
SIXBIT
RECORDING |[MODE IS¢ BINARY
E
y
L -

[‘%%%%;%%%%%%} IS data-name-1 [data-name-z [data-name-3 [data-name-4

[data-name-s [data-name—G [data-name-7 [data-name-B]]]]]]]]

3-44 October 1985

CHAPTER 4

THE DATA DIVISION

The Data Division, which is required in every COBOL program, describes
the characteristics of the data to be processed by the object program.

This data can be divided into six major types:

6.

Data contained in files, both input and output

Data contained in a database . and accessed through the Data
Base Management System

Data to be sent to or received from the Message Control
System or the Transactional Processing System

Data which is used by the program in the process of executing
(This data can be constant or variable, and may be stored as
part of the program or computed by the program during its
operation.)

Data in a subprogram that is passed from the program calling
it

Data to be printed in a report, and the format used to print
such data

To handle these types of data, the Data Division consists of the
following sections:

1.

2.

The File Section, which describes the characteristics and the
data formats for each file processed by the object program

The Schema Section, which names the sub-schema and schema
that link a program or subprogram to the Data Base Management
System

The Communication Section, which defines the special data
items that 1link a program or subprogram to the Message
Control System (MCS-10) or the Transactional Processing
System (TPS-20) '

The Working-Storage Section, which contains any fixed values
and the working areas in which intermediate data can be
stored

The Linkage Section, which describes the data in a subprogram
that is available from a calling program

The Report Section, which describes the data and format of a
report

THE DATA DIVISION

Unused sections of the Data Division may be omipted. However, the
sections which are included must be in the following order:

FILE SECTION.

SCHEMA SECTION.
COMMUNICATION SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

4.1 FILE SECTION

The File Section begins with the section-header FILE SECTION. If
present, it must be the first section in the Data Division. 1In the
File Section, the characteristics of each file to be processed are
described by two types of entries, the file description and the record
description.

The first type of entry, the file description, describes the physical
aspects of the file. These aspects include:

1. How the logical data records of the file are physically
grouped into blocks on the file medium

2. The maximum length of a logical record, which cannot exceed
4095 characters

3. Whether or not the file contains header and trailer labels
and, if so, whether the format of these labels is standard or
nonstandard

4. The names of the records contained in the file

5. The names of any reports in the file

The second type of entry, the record description, describes the data
formats of the logical records in the files.

4.1.1 Record Descriptions

Following the FD file-name entry for a file, or the SD file-name entry
for a sort file, a record description is given for each different
record format in the file. A record description consists of a set of
data description entries which describe a particular logical record.
Each data description entry consists of a level-number followed by a
data-name (or FILLER) which is followed, as required, by a series of
descriptive clauses. The general format of a data description entry
can be found in Section 4.9.11. -

A record description begins with a level-0l1 entry:
01 data-name
A complete record description may be as simple as
01 data-name PICTURE picture-string.
or it may be more complex, where the 0l-level is followed by a 1long

series of data description entries of varying hierarchies that
describe various portions and subportions of the record. A Ol-level

4-2

THE DATA DIVISION

data-name in the File Section cannot be explicitly redefined using the
REDEFINES clause. However, because a file has only one record area,
if more than one data-name is specified, they implicitly redefine the
first data-name.’

4.1.2 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an
elementary item; it may be referenced directly only as a unit. An
elementary item may combine with contiguous elementary items to form
sets of data items called group items. Group items may combine with
other group items and/or elementary items to form more inclusive group
items. Thus, an elementary item may be contained within one or more
group items, and a group item may contain more than one elementary
item.

4.1.3 Level Numbers

Level numbers indicate a hierarchy of data items. The highest level
is 01, which signifies that the data item is a record within a file
named in an FD clause (or is a contigquous area in the Working-Storage
Section). Level numbers of 02 through 49 indicate items that are
subordinate to a 0l-level data item. For example, an employee record
can be described in the following manner:

01 EMPLOYEE-RECORD.
02 NAME.
03 FIRST-NAME PICTURE IS A(6).
03 MIDDLE-INITIAL PICTURE IS A.
03 LAST-NAME PICTURE IS A(20).
02 BADGE-NUMBER PICTURE IS X(5).
02 SALARY-CLASS PICTURE IS X(2).

Within a record description, the level numbers indicate which items
are contained within higher-level items. 1In the above example, the
items that have a 03 level are subordinate to NAME, which has a 02
level, which is in turn subordinate to EMPLOYEE-RECORD, which has a 01
level. The example also shows elementary items (those that contain
PICTURE clauses) contained within group items. In this example,
EMPLOYEE-RECORD is a group item, NAME is a group item contained within
a group item, and FIRST-NAME is an elementary item contained within
the group item NAME. An item at 01 level is not required to be a
group item; it may be an elementary item as long as it is referenced
as a unit. For example:

01 EMPLOYEE-RECORD PICTURE IS X(34).

shows the same record as above, but in this case the record is always
operated on as a single entity.

Three other level numbers are available to the COBOL programmer: 77,
66, and 88.

Items with a level number of 77 are noncontiguous elementary data
items that are defined only in the Working-Storage Section to define
constant values or to store intermediate results. Defining a level-77
item is the equivalent of defining a level-01 elementary item.

Level-66 data items are those items that contain an explicitly
specified portion of a record already defined, or even the whole

4-3

THE DATA DIVISION

record. A data item with a level number of 66 is used in a RENAMES
clause to regroup items within a record. After a record is described,
a level-66 item RENAMES a portion of that record. The level-66 data
ijtem can be a regrouping of the whole record, a group within the
record, or a combination of group and elementary items. For example:

01 EMPLOYEE-RECORD
02 NAME
03 FIRST-NAME...
03 MIDDLE-INITIAL...
03 LAST-NAME...
02 BADGE-NO...
02 SALARY-CLASS...
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO.
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS.

When the level-66 item PAY~-REC is referenced, the items LAST-NAME,
BADGE-NO, and SALARY-CLASS are referenced as a unit. The programmer
can thus regroup portions of a record for differing purposes.

Level-88 items are condition-names that cause a value or a range of
values to be associated with a data item. The condition-name may then
be used in place of the relation condition in conditional expressions
in the Procedure Division. For example:

03 BADGE-NO...
88 FIRST-BADGE VALUE IS A0001.
88 LAST-BADGE VALUE IS 79999.

In a comparison, the following statements would then be equivalent:

Conditional Variable Condition~-Name
IF BADGE-NO IS EQUAL TO A0QO0l... IF FIRST-BADGE...
IF BADGE-NO IS EQUAL TO Z9999... IF LAST-BADGE...

4.2 SCHEMA SECTION

In the Schema Section, either an INVOKE statement or ‘an ACCESS
statement specifies the names of the sub-schema and schema to be
processed.

The Schema Section begins with the section-header SCHEMA SECTION and
must follow the File Section, if present.

If the installation does not include DBMS, the Schema Section cannot
be used.

A description of the contents of the Schema Section will be found in
the Data Base System Programmer's Procedures Manual.

4.3 COMMUNICATION SECTION

The Communication Section contains the definitions of input and output
communication-description entries.

CD entries define records called CD records which contain special data
items used to link the program to the Message Control System for users
of TOPS-10 or the Transactional Processing System for users of
TOPS-20.

THE DATA DIVISION

4.3 COMMUNICATION SECTION

The Communication Section contains the definitions of input and output
communication-description entries.

CD entries define records called CD records that contain special data
items used to link the program to the Message Control System (MCS) for
TOPS-10 users.

The Communication Section begins with the section-header COMMUNICATION
SECTION and must follow the File Section and Schema Section and
precede the Report Section.

If your TOPS-18 installation does not include MCS, the Communication
Section cannot be used.

Details of the Communication Section entries can be found 1in the
Message Control System Programmer's Procedures Manual for TOPS-10
users.

4.4 WORKING-STORAGE SECTION

The Working-Storage Section defines (1) data that is stored when the
object program is loaded, and (2) areas used for intermediate results.
The Working-Storage Section is similar to the File Section, except
that the Working-Storage Section can contain level-77 items and cannot
contain FD, SD, RD, CD, or SCHEMA entries,

The Working-Storage Section begins with the section-header
WORKING-STORAGE SECTION.

The maximum size of a record in Working Storage is 262,143 characters.
However, the maximum size of a record to be read or written can only
be 4,095 characters.

4.5 LINKAGE SECTION
The Linkage Section describes data avallable from a calling program
and can appear only in a subprogram. The structure is the same as
that of the Working-Storage Section with the following restrictions:
l. The VALUE clauses can only be used in condition-name entries.
2. The data-names used in the VALUE OF IDENTIFICATION (or 1ID),
the VALUE OF DATE-WRITTEN, and the VALUE OF USER NUMBER
cannot appear in this section.

3. The OCCURS clause with the DEPENDING phrase cannot be defined
in this section.

4, The RECORD KEY and RELATIVE KEY data items cannot be defined
in this section.

4-5 October 1985

THE DATA DIVISION

Data described in the Linkage Section of a subprogram is not allocated
storage space. Instead, at link-time, the LINK program sequentially
equates the Linkage Section identifiers (listed in the USING clause of
the ENTRY statement within the subprogram or in the USING clause of
the Procedure Division header within the subprogram) to the calling
program identifiers (listed in the USING clause of the CALL statement
within the calling program). Thus, when the Procedure Division of a
subprogram executes, references to the Linkage Section data refer
instead to the calling program data.

Thus:

CALLING PROGRAM CALLED PROGRAM

DATA DIVISION. DATA DIVISION.

FILE SECTION. FILE SECTION.

FD... LINKAGE SECTION.

01 MAIN... 01 SUB...

02 MAINI... 02 SUBl...

02 MAINZ... 02 SUB2...

PROCEDURE DIVISION. PROCEDURE DIVISION.
. ENTRY ENTRPT USING SUB,
. SUBl, SUB2.

CALL ENTRPT USING MAIN,
MAIN1, MAINZ2. .
. EXIT PROGRAM.

The identifier MAIN is defined in the File Section of the calling
program; the identifier SUB is defined in the Linkage Section of the
called program. When the Procedure Division of the called program
executes, references to SUB refer instead to MAIN, references to SUB1
refer to MAIN1l, and so on through the list. See the COBOL-74 Usage

Material, Part 3 of this manual, for more information about
subprograms.

Each 01- or 77-level item in the Linkage Section must have a unique
name because it cannot be qualified. Also, each 01- and 77-level item
must correspond to a word-aligned item of the same size or larger in
the calling program. Word-aligned items start at the beginning of a
computer word. All 01- and 77-level items fulfill this requirement;
any items that do not can be made to do so by means of the
SYNCHRONIZED LEFT statement.

4.6 REPORT SECTION

The Report Section defines reports by describing the physical
appearance of the particular format and data rather than by specifying
the procedure used to produce the report.

THE DATA DIVISION

4.6.1 Format Of Report Section

The Report Section contains the descriptions of one or more reports
and the report groups that make up each report.

Report groups are the basic elements of a report. Each report group
is divided into report lines, which are in turn divided into fields.
The report groups that can appear in a report are:

REPORT HEADING printed once at the beginning

REPORT FOOTING printed once at the end

PAGE HEADING printed at the beginning of each page

PAGE FOOTING printed at the end of each page

DETAIL printed for each set of report data

CONTROL HEADING printed at the beginning of each detail

report group when a control break occurs

CONTROL FOOTING printed at the end of each detail report
group when a control break occurs

The detail report groups contain the data items that constitute the
report. Data items within a detail group can be designated by the
programmer as controls. These control items are in descending order
of rank from final, through major, intermediate, to minor. Each time
a control item changes, a control break is said to occur; the control
footings for the detail group are printed, and control headings for
the next detail group are printed before the next detail group is
printed. A FINAL control break occurs twice during the generation of
a report, before the first detail line is printed and after the 1last
detail 1line 1is printed. The most major control break happens least
often and the most minor control break happens most often. If the
most minor control field breaks, the control footing for that control
field is generated, and the control heading for the next detail group
for that control is generated. If a more major control field breaks,
the control footings for all fields more minor than that which broke
are generated, starting with the most minor and continuing up to the
control footing for the control that broke. The control headings are
then printed starting with the control field that broke and continuing
through the most minor control field. An example of a skeleton report
follows.

THE DATA DIVISION

REPORT HEADING

PAGE HEADING

CONTROL HEADING (FINAL)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR) (control break occurred)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR) (control break occurred)
CONTROL HEADING (MAJOR)

CONTROL HEADING (MINOR)

DETAIL GROUP

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR)

CONTROL FOOTING (FINAL) (control break occurred)
PAGE FOOTING

REPORT FOOTING

Within a report file, more than one report can be written. If more
than one report is written in a file, the names of all the reports
must be specified in the REPORTS clause of the file description entry,
and a unique code must be specified for each report by means of the
CODE clause in the Report Description of each report. The code must
also be identified in the SPECIAL-NAMES section of the Environment
Division.

To print one of the reports within a report file, you enter the
filename and the code of the desired report into the print queue using
the PRINT command and specifying the code with the REPORT switch, as
follows:

PRINT file-specifier/REPORT:code

Only the first 12 characters of the code will be accepted in the PRINT
command string.

Included in the description of a report are the number of lines on a
report page, where headings should begin on the page, where footings
should end, the column on the page where each item in a report group
should be placed, and the number of lines which should be left between
report groups.

To cause a report to be printed, in addition to specifying its format
and data in the Data Division, you must include certain verbs in the
Procedure Division. These verbs are: INITIATE, which initializes the
report and sets sum counters to zero; GENERATE, which causes report
groups to be generated on specified control breaks; and TERMINATE,
which ends the report. An additional statement, USE BEFORE REPORTING,
causes programmer-specified procedure to be performed before a report
group is produced.

THE DATA DIVISION

4.7 QUALIFICATION

Any data item that is to be referenced must be uniquely identified.
This unique identification can be achieved by the assignment of a
unique name to each item. However, 1in many applications this is
tedious and inconvenient (1) because of the large number of names
required, and (2) because 1items containing the same type of
information in different records would have different names.
Therefore, qualification is introduced to allow similar items and
certain records to have identical names.

Qualification means giving enough information about the item to
specify it uniquely. In COBOL, this information is the name of the
group items containing it, in order of increasing inclusiveness. It
is not necessary to name each group containing it, but only enough
groups so that no other item with the same name as the original item
could be identically qualified. It is also unnecessary to name each
successively higher group containing the item until a unique
qualification is made. Any set of names that uniquely describe the
item is sufficient.

Example:
01 RECORD-1. 01 RECORD-2.
02 ITEM-1. 02 ITEM-2.
03 SUB-ITEM. 03 SUB-ITEM.
04 FIELD PIC X. 04 FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of
the following ways:

FIELD OF SUB-ITEM OF ITEM-1 OF RECORD-1.
FIELD OF SUB-ITEM OF ITEM-1.

FIELD OF SUB-ITEM IN RECORD-1.

FIELD IN ITEM-1 OF RECORD-1.

FIELD IN RECORD-1.

FIELD IN ITEM-1.

The connectives OF and 1IN are equivalent and may be used
interchangeably.

The only data items which need to have unique names are level-77 items
and records not associated with files, since they are not contained in
any higher level data structure. Records associated with files may be
qualified by the file name, as may any item contained within the
record. File names must be unique.

Level-66 items may be qualified only (1) by the name of the record
with which they are associated and (2) by the name of any file with
which that record is associated.

4.8 SUBSCRIPTING AND INDEXING

It may sometimes be more convenient for you to specify a set of data
values as a table rather than assign a name to each element of the
set. A table (or array) is a set of homogeneous items stored together
in memory for use by the program. You define the table elements in
the program by specifying an OCCURS clause in the description of a
data item. The data item thus defined represents not one item but a
set of items having the identical format. Subscripting and indexing
are used to refer to one of the elements of the set. 1In DIGITAL
COBOL-74, subscripting and indexing are identical in use and can be

4-9

THE DATA DIVISION

used interchangeably. However, the manner in which they are defined
differs. Subscripting is defined simply by the fact that an item has
an OCCURS clause in its description. For example,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES.

describes VOLUME as 25 elements of RATE-TABLE. If you wish to refer
to one of the elements of this set you must qualify the data-name with
a subscript. Thus, VOLUME (10) is the tenth element (or occurrence) of
VOLUME . A subscript can be either an integer or a data-name to which
an integer value has been assigned. Thus, when DIST has been assigned
to value 10, VOLUME (DIST) is the same as VOLUME(10).

To specify indexing you must add the INDEXED BY option to the OCCURS
clause. Thus,

01 RATE-TABLE. .
02 VOLUME OCCURS 25 TIMES INDEXED BY IND.

defines VOLUME as 25 elements of the table and defines IND as the
index by which each element of the table can be indexed; that is,
VOLUME (IND) is an element in the table. The index-name IND is
treated exactly like the data-name DIST because the compiler
recognizes an index-name as being exactly the same as a data-name. An
item defined as an index in an OCCURS clause has an implicit usage of
INDEX, and is equivalent to a data item that is declared USAGE INDEX.
However, this usage 1is included in DIGITAL COBOL for compatibility
with other compilers because an item whose usage is INDEX (implicit or
explicit) 1is treated as if its usage were COMPUTATIONAL. In fact, a
data-name that is used as a subscript can be explicitly declared as
USAGE INDEX; it will be treated as a COMPUTATIONAL data item by the
compiler.

COBOL-74 tables can be one, two, or three dimensions. The number of
dimensions 1is defined by the number of subscripts or indexes required
to refer to an individual item. For example,

C(1,3)

represents the item located in the first row and third column of a
2-dimensional table which is defined by the Data Division entries

01 TABLEA.
02 ROW OCCURS 20 TIMES.
03 COLUMN OCCURS 5 TIMES.

The subscript/index must be enclosed in parentheses and must appear
after the data-name. A space between the data-name and the
parentheses is optional. Multiple subscripts/indexes are separated by
a comma or by a space. No spaces can appear immediately following the
left parenthesis or immediately preceding the right parenthesis. When
referring to elements in multi-dimensional tables, subscript/indexes
are written from left to right in the order of major (subscript/index
varying least rapidly), intermediate, and minor (subscript/index
varying most rapidly). The major index corresponds to the item
written with the smallest level-number, that is, the most inclusive
item. As an illustration, consider a table having a major element
occurring 10 times, an intermediate element occurring 5 times within
each occurrence of the major element, and a minor element occurring 3
times within each intermediate element. The last major element of the
table is referred to by the subscript form (10,1,1), while the final
element of the table is referred to by (10,5,3).

4-10 January 1980

THE DATA DIVISION

NOTE

DATA DIVISION entries are limited to 4688 data items
as you define them., Refer to Sectlon 13.4.4, for a
description of this restriction.

The subscript/index must be enclosed in parentheses and must appear
after the data-name, A space between the data-name and the
parentheses is optional. Multiple subscripts/indexes are separated by
a comma or by a space. No spaces can appear immediately following the
left parenthesis or immediately preceding the right parenthesis. When
referring to elements in multi-dimensional tables, subscript/indexes
are written from left to right in the order of major (subscript/index
varying least rapidly), intermediate, and minor (subscript/index
varying most rapidly). The major index corresponds to the item
written with the smallest level-number, that is, the most inclusive
item. As an illustration, consider a table having a major element
occurring 10 times, an intermediate element occurring 5 times within
each occurrence of the major element, and a minor element occurring 3
times within each intermediate element. The last major element of the
table is referred to by the subscript form (14,1,1), while the final
element of the table is referred to by (14,5,3).

There are two forms of subscripting/indexing: direct and relative.
Direct subscripting/indexing means that the subscript/index refers
directly to the desired element. Relative subscripting/indexing means
that the element of the table 1is referred to indirectly by a
subscript/index to which an integer is added or subtracted. The form
for direct subscript/indexing is shown in Figure 4-1.

" data-name ({?ﬁﬂéi‘"pt} [{ :?rl:'c)j(seiript }j')
MR-S-581-80

Figure 4-1: Direct Subscripting/Indexing

In relative subscripting/indexing, the subscript/index is followed by
the operator plus (+) or minus (-) followed by an unsigned integer
numeric literal. The operator plus (+) or minus (~) must be delimited
by spaces. The subscript/index, the operator, and the numeric literal
must follow the data-name and must be enclosed in parentheses. The
form for relative subscripting/indexing is shown in Figure 4-2,

data-name ({:s%g;ript} {f} integer [{:?#22§ript} {f} integer] ...)

MR-S-582-80

Figure 4-2: Relative Subscripting/Indexing

4-11 ; October 1985

THE DATA DIVISION

When you use relative subscripting/indexing, the element of the table
that you refer to is not the one to which the subscript/index refers,
but the element to which the subscript/index plus or minus the integer
refers. That is, if the item

VOLUME (IND + 2)

is specified, and IND is set at 3, the fifth occurrence of VOLUME is
referred to, not the third. However, the value of the subscript/index
is not changed by relative subscripting/indexing; the value of IND
remains 3.

You can also combine direct and relative subscripting/indexing in the
same statement. For example, if you specify the following data item:

TABLE (IND, VOL + 3)

the first subscript value is the value of IND and the second subscript
value is the value of VOL + 3.

When you need to qualify a table element for uniqueness, you should
use the format for direct subscripting/indexing shown in Figure 4-3.

=15

data-name [{ I } data-name-l] v ({?gg:iript} [{,§#322ript }] ...>

MR-5-583-80

Figure 4-3 Qualified Direct Subscripting/Indexing
For example, to refer to ANAME in the following sample:

01 ARECI1.
02 AGROUP1 OCCURS 5.
03 ASUBGROUP1 OCCURS 10.
04 ANAME PIC X(5) OCCURS 20.

you could specify the following:
ANAME OF ASUBGROUP1 OF AGROUP1 OF AREC1 (I,J,4)

NOTE

Subscripts can not be subscripted.

4.9 DATA DIVISION CLAUSES

The clauses that make up the Data Division are presented in the
following pages. The function, syntax, and details of each clause are
described, and the general format of the clause |is included. The
clauses are presented in the order in which they appear in the general
formats at the end of this chapter, that is, in the order in which
they occur in the Data Division. The formats of some clauses contain
other clauses. When this is the case each clause that is subordinate
is described separately on succeeding pages.

THE DATA DIVISION

FILE DESCRIPTION (FD)

4.9.1 File Description (FD)

Function

The File Description (FD) furnishes information concerning the
physical structure, identification, and record names pertaining to a
given file.

General Format
DATA DIVISION.

[:FILE SECTION.
[:Eg file-name

[}LOCK CONTAINS [linteger-1T0] integer-2 % %ﬁ%%%%%%%s {]

[:BECORD CONTAINS [integer-3 T0'| integer-4 CHARACTER%] :

LABEL RECORD IS STANDARD
_— RECORDS ARE OMITTED

IDENTIFICATION data-name-1
VALUE OF [glﬂ } IS {1itera]_1 {}

[data-name-2 data-name-3
DATE-WRITTEN IS {1itera1-2 E} [§SER-NUMBER 1S { integer-5, integer-6 {J

—

RECORD IS
DATA {mg ARE} data-name-4 l:data-nawe—S:l .. :\

—

LINAGE IS {data'"ame's} LINES

data-name-7
WITH FOOTING AT {integer-B gJ

integer-7

data-name-8] - ydata-name-9
[EINES AT TOP {integer-Q } [}INES AT.BOTTOM {1nteger-10 E]

[FODE-SET IS alphabet-name:]

[: {ﬁ ;8§¥SIiRE} report-name-1 [}eport-name-g] ..;}

mym

4-13 October 1985

THE DATA DIVISION

FILE DESCRIPTION (FD) (Cont.)

RECORDING | MODE IS [BYTE MODE]

ASCII 7]

DENSITY IS

TANDARD-ASCI
TANDARD ASCI

200
556
800 PARITY IS {%}
1600 — LEVEN
6250

-

MR-S-1272-81

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1.

2.

An FD entry must be present for each file-name selected in
the FILE-CONTROL paragraph of the Environment Division.

All semicolons and commas are optional. The entire FD entry
must terminate with a period.

The clauses can appear in any order within the File
Description entry.

The ability to place the RECORDING MODE clause in the FD has
been provided for compatibility with other manufacturers. If
you specify the RECORDING MODE clause for a file in the FD,
you cannot also specify it in the File-Control paragraph for
that file in the Environment Division. Also, if you wish to
use the RECORDING DENSITY and RECORDING PARITY clauses, you
must put them in the File-Control paragraph in the
Environment Division, even if the RECORDING MODE clause is in
the FD. The description of the RECORDING MODE clause can be
found in Section 3.1.13.

The maximum number of files that can be open at one time |is
16. ISAM files count as two files: one index (.IDX) file
and one data (.IDA) file. However, RMS files (multi-key ISAM

files that are accessed through RMS) do not count towards
this total of 16.

4-14

THE DATA. DIVISION

BLOCK CONTAINS

4.9.2 BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a logical block.

General Format

ELOCK CONTAINS [integer-1 T0] integer-2 {———Eﬁﬁﬁﬁ‘@%ﬁ&s }jl

MR-§-1273-81

Technical Notes

1'

2.

This clause is ignored for RMS files (multi-key indexed files
that are accessed through RMS).

If you do not include this clause, or if you specify that
integer-2 is zero, the file is not organized into logical
blocks when it is written. Rather, all records are placed in
the file with no empty space. The file is then considered to
be "unblocked" or "blocked zero® and is the most efficient
form of a sequential file on disk.

If you use the RECORDS clause, the block size can be any
multiple of the RECORD CONTAINS clause, or zero (for variable
or fixed length records).

If you use the CHARACTERS option, you specify the 1logical
block size in terms of the number of character positions
required to contain the record. If the recording mode is
ASCII (that 1is, all records for the file are described,
explicitly or implicitly, as USAGE DISPLAY-7), the compiler
assumes that the size 1is specified in terms of ASCII
characters, If the recording mode is SIXBIT (that 1is, the
records for the file are all described, explicitly or
implicitly, as DISPLAY-6), the compiler assumes that the size
is specified in terms of SIXBIT characters. 1If the recording
mode is F or V (that is, the data is recorded on the medium
as EBCDIC characters), the compiler assumes that the size is
specified in terms of EBCDIC characters, either fixed- or
variable-length. When variable-length EBCDIC records are
used (that is, the recording mode 1is V), the number of
records in a block is also variable. If the blocking factor
is not zero, the number of records in a block 1is determined
by dividing the block size in characters by the number of
characters in the longest record as specified by the FD
statement., For example, if the FD statement specifies a
maximum record 1length of 248 characters and the 'BLOCK
CONTAINS 2400 CHARACTERS clause is wused, the number of
records in a block are 9.

4-15 October 1985

THE DATA DIVISION

BLOCK CONTAINS (Cont.)

5. 1Integer-1 and integer-2 must be positive integers. If you
specify only integer-2, it represents the exact size of the
logical block. If you specify both integer-l and integer-2,
integer-1 is 1ignored and integer-2 1s used as the blocking

factor.

6. Files whose organizations are RELATIVE or INDEXED must have a
nonzero blocking factor.

4-16 October 1985

THE DATA DIVISION

CODE-SET

4.9.3 CODE-SET

FUNCTION

The CODE-

SET clause specifies the character code set used to represent

data on the external media.

General Format

[com-:-ser

1S alphabet-name;]

Technical Notes

1.

When you specify the CODE-SET clause for a file, you must
describe all data in that file as USAGE IS DISPLAY. You must
also describe any signed numeric data with the SIGN IS
SEPARATE clause.

The alphabet-name clause referenced by the CODE-SET clause
must not specify the literal phrase.

You may specify the CODE-SET clause only for files not
residing on mass storage media.

The CODE-SET clause is included only for compatability, since
ASCII is the only alphabet-name allowed, and ASCII is also
the default.

If you include the CODE-SET clause, alphabet-name specifies
the character code convention used to represent data on the
external media. It also specifies the algorithm for
converting the character codes on the external media from or
to the native character codes. This code conversion occurs
during the execution of an input or output operation.

If you omit the CODE-SET clause, the ASCII character set is
assumed for data on the external media.

4-17

THE DATA DIVISION

DATA RECORD

4.9.4 DATA RECORD

Function

The DATA

RECORD clause cross-references the record-name with its

associated file.

General Format

RECORD IS
[}ATA {'ﬁfﬁﬁﬁﬁs ARE} data-name-4 [}ata-name-s:] ...:}

Technical Notes

1.

2.

3.

This clause is optional because all records in the FD entry
are assumed to be data records.

All records within a file share the same area.

All record-names must be specified in 0l-level data entries
subordinate to this FD entry. The presence of more than one
such record-name indicates that the file contains more than
one type of data record. These records may have different
descriptions. The order in which they are 1listed 1is not
significant.

THE DATA DIVISION

FD File-name
4.9.5 FD File-name

Function

The FD file-name clause identifies the file to which this file
description entry and the subsequent record descriptions relate.

General Format
[:ig file-namé:]

Technical Notes
1. This entry must begin each file description.

2. The file-name must appear in a SELECT statement in the
File-Control paragraph of the Environment Division.

4-19

THE DATA DIVISION

LABEL RECORD

4.9.6 LABEL RECORD
Function
The LABEL RECORD clause specifies whether or not labels are present on

the file and, if they are, identifies the format of the labels.

General Format

STANDARD

RECORD IS v
LABEL {ms ARE} OMITTED %
record-name-1

Technical Notes

1. If you omit the clause, LABEL RECORDS ARE STANDARD is
assumed.

2. You should use the OMITTED option when the file has no header
or trailer labels.

3. You should use the STANDARD option when the file has header
and trailer labels that conform to the standard format. If
the file you are describing is on disk or DECtape, you must
either specify LABEL RECORDS ARE STANDARD, or omit the clause
altogether allowing the default to take over. See the VALUE
OF IDENTIFICATION clause for the association between the
label and the filename on disk or DECtape.

The standard label for DECtape and disk is the directory
block used by the monitor. For magnetic tape, if the file is
recorded in SIXBIT, the standard label is 78 SIXBIT
characters in 1length and is written in a separate physical
record from the data. If the recording mode 1is ASCII, the
label contains 78 ASCII characters, plus carriage return and
line feed, for a total of 80 characters. Table 4-1 shows the
contents of each character in a standard 1label for
nonrandom-access devices.

Magnetic tapes are the only devices with ending labels. Each
ending label 1is preceded by and followed by an end-of-file
mark.

4. Files whose recording mode is F or V (fixed- or variable-
length EBCDIC) must have LABELS RECORDS ARE OMITTED if they
are on magnetic tape. If they are on disk or DECtape, they
are assumed to have DECsystem-10 standard labels.

THE DATA DIVISION

LABEL RECORD (Cont.)

Table 4-1
Standard Label for Magtapes

Characters Contents
1-4 HDR1 = Beginning File
EOFl1 = Ending file
EOV1 = Ending reel
5-13 Value of identification
14-21 Always spaces
22-27 Not used
28-31 Reel number; the first reel is always 0001
32-41 Not used
42-47 Creation date; two characters each for the
year, month, and day, respectively
48-78 Not used
79-80 Carriage-return/line-feed if file is ASCII (Note

that this is on the label only; it is not kept
internally.)

THE DATA DIVISION

LINAGE

4,9.,7 LINAGE
Function

The LINAGE clause specifies the size of a logical page in terms of
number of lines. It can also specify the size of the top and bottom
margins on the logical page and the line number, within the page body,
at which the footing area begins..

General Format

data-name-1 data-name-2
LINAGE IS {integer-l] LINES [WITH FOOTING AT {integer-Z }]

data-name-3 data-name-4
[LINES AT T0°P [integer-3 }] LINES AT BOTTOM ‘integer-4 }

MR-S-1278-81

Technical Notes

1. LINAGE is valid only for sequential files. However, the
LINAGE clause cannot be specified for sequential files OPENed
in the EXTEND mode.

2. The logical page size is the sum of the values referenced by
each phrase except the FOOTING phrase. (There 1is no
necessary relationship between the size of the logical page
and the size of a physical page.) If the LINES AT TOP or
LINES AT BOTTOM phrases are not specified, the values for
these functions are zero.

3. Data-name-1, data-name-2, data-name-3 and data-name-4 must
reference elementary unsigned numeric integer data items.
The value of integer-1 must be greater than zero; the value
of integer-2 must not be greater than integer-1; the value of
integer-3 and integer-4 can be zero.

4, The number of lines on the logical page is equal to the value
of integer—-1 or the data item referenced by data-name-1. The
page body is that part of the logical page in which lines can
be written and/or spaced.

5. The line number within the page body at which the footing
area begins 1is equal to the value of integer-2 or the data
item referenced by data-name-2. The value must not be
greater than the value of integer-1, or the data item
referenced by data-name-1., The footing area is the area of
the logical page between the line represented by the value of
integer-2 (or the data item referenced by data-name-2) and
the 1line represented by the value of integer-1 (or the data
item referenced by data-name-1) inclusive.

4-22 October 1985

THE DATA DIVISION

REPORT

4.9.8 REPORT

Function
The REPORT clause specifies the name of each report that is associated
with the file.

General Format

[: {%%%gg%SIiRE} report-name-1 [}eport-name-g] ..{}

Technical Notes

1. This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

2. Report-name-]l and report-name-2 must be the names of Report
Descriptor items in the Report Section.

3. If you use this clause, you may omit the data record
description because the name of the data record is not
referred to directly in the Procedure Division. When the
data record description is omitted, the compiler
automatically assumes a 132-character record.

THE DATA DIVISION

SD File-name

4.9.9 SD File-name

Function
The SD file-name clause identifies the sort file to which this file
description entry and the subsequent record description relate.

General Format

[:gg file-name
[:RECORD CONTAINS [}nteger-l ﬂi] integer-2 CHARACTER{]

RECORD IS . .
{:éATA {RECORDS ARE} data-name-1 [Eata name {] ..;}
Erecord—description-entry} j]

Technical Notes
1. The SD entry must begin each sort file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the Environment Division.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

THE DATA DIVISION

REPORT

4.9.9 REPORT

Function

The REPORT clause specifies the name of each report that is associated

with the

file.

General Format

[: {%%%%g%SIERE} report-name-1 [}eport-name-g] ..:]

MR-§-1280-81

Technical Notes

1.

2.

This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

A file described with a REPORT clause cannot be referenced by
any input-output statements except the OPEN and CLOSE
statements,

Report-name-1 and report-name-2 must be the names of Report
Descriptor items in the Report Section.

If you use this clause, you can omit the data record
description because the name of the data record is not
referred to directly in the Procedure Division. When the
data record description is omitted, the compiler
automatically assumes a 1l32-character record.

4-25 ‘ October 1985

THE DATA DIVISION

SD File-name

4.9.10 SD File-Name

Function

The SD file-name clause identifies the sort file to which this file
description entry and the subsequent record description relate.

General Format

[:gg file-name
[:RECORD CONTAINS [}nteger-l [Q] integer-2 CHARACTER%]

[:6ATA {E%%%%%SIiRE} data-name-1 [Eata-name-é] ...j} .
[{record-description-entry} ...:] ...i}

Technical Notes

MR-S-1281-81

1. The SD entry must begin each sort file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the Environment Division.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN
/USER-NUMBER

4.9.11 VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

Function

The VALUE OF IDENTIFICATION clause provides specific data for an item
within the 1label records associated with a file. The VALUE OF
DATE-WRITTEN clause specifies a date which the file label must contain
to be processed by the program. The VALUE OF USER-NUMBER clause
provides a project-programmer number to be checked against the file
label before processing.

General Format

IDENTIFICATION data-name-1
VALUE OF B;g } IS {Htera]-l }]

_ data-name-2 CE B data-name-3
[%ATE WRITTEN IS {1itera1-2 %] [}SER NUMBER IS {integer—l, integer-2 {]

Technical Notes
l. 1ID can be substituted for IDENTIFICATION.

2. The VALUE OF IDENTIFICATION clause is required only if 1label
records are standard; it is ignored in all other cases. The
VALUE OF DATE-WRITTEN and the VALUE OF USER-NUMBER are always
optional.

3. The three clauses can be written in any order, but only one
of each can be specified for a file.

4. IDENTIFICATION represents the file~name and extension of a
file with standard labels. If a data-name is specified, it
must be associated with a DISPLAY, DISPLAY-6, DISPLAY-7, or
DISPLAY-9 data item nine characters in length., If a literal
is specified, it must be a nonnumeric literal nine characters
in 1length. The first six characters are taken as the
file-name, and 1last three characters are taken as the
extension. The programmer must provide spaces as required to
conform to this convention, The literal cannot consist
exclusively of spaces. The period which the system prints
between the file-name and the extension must not be included
in the VALUE OF IDENTIFICATION clause.

4-27 October 1985

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN
/USER-NUMBER (Cont.)

Examples:
a. VALUE OF IDENTIFICATION IS "COST TST"

b. VALUE OF IDENTIFICATION IS FILE-1-NAME

(WORKING-STORAGE SECTION.)

77-FILE-1-NAME PICTURE IS X(9).

DATE-WRITTEN represents the date that a mag tape file (with
STANDARD labels) was written, If a data-name is specified,
it must be associated with a DISPLAY, DISPLAY-6, DISPLAY-7 or
DISPLAY-9 data item six characters in length. If a literal
is specified, it must be a nonnumeric literal six characters
in 1length. The first two characters are taken as year, the
next two as month, and the last two as day. The DATE-WRITTEN
clause 1is ignored when the file is OPENed for output;
instead, the current date is used.

Examples:

a. VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS
819112

b. VALUE OF IDENTIFICATION IS "DATA ", DATE-WRITTEN IS
FILE-1-DATE

(WORKING-STORAGE SECTION.)
77 FILE-1-DATE PICTURE IS 9(6).

USER-NUMBER represents the project-programmer number of the
owner of a disk file; it is ignored for all other devices.
Data-name-3 must be a COMPUTATIONAL item of 18 or fewer
digits in which the project-programmer number is stored.
Integer-1 and integer-2 are numeric literals of six or fewer
digits that are treated as octal. 1Integer-l is the project
number and integer-2 is the programmer number.

For input files the VALUEs specified are checked against the
file when it 1is opened. ISAM files are checked as soon as
your program is run, For output files, the VALUE OF
IDENTIFICATION is written when the file is opened. If the
specified values do not match a file on the selected medium,
a run-time error message is 1ssued.

“1f the access mode is INDEXED and data-name-l1 is used in the

VALUE OF IDENTIFICATION clause, data-name-1 must contain the
filename and extension of the index-file for the
indexed-sequential file being referenced. The contents of
data-name-1 can not be altered during program execution. You
need not specify the identification for the data file of an
indexed-sequential file because this identification is stored
in the index file. ’

4-28 October 1985

THE DATA DIVISION

DATA DESCRIPTION ENTRY

4.9.11 DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of data.

General Format

FORMAT 1:

data-name-1
level-number { FILLER }

[:REDEFINES data-name-2 :]

{ %%EFQBE } I character—string:]

COMPUTATIONAL
coMp
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-3
COMP-3

USAGE IS DISPLAY
DISPLAY-6
DISPLAY-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY /

L — —

(‘ LEADING
[:§IGN 1{] {TRAILING} [}EPARATE CHARACTE{i}

—

|

OCCURS {‘nteger-l T0 integer-2 TIMES DEPENDING ON data-name-3}
——=>== linteger-2 TIMES

b

—
{“ﬁggggﬁ%}?ﬁe} KEY IS data-name-4 l:data -name- 5:] :|

[:INDEXED BY index-name-1 [:1ndex name- {] :1}

SYNCHRONIZED LEFT
SYNC RIGHT

JUSTIFIED RIGHT
JUST LEFT

THE DATA DIVISION

DATA DESCRIPTION ENTRY (Cont.)

FORMAT 2:

THRU

66 data-name-1 RENAMES data-name-2 { THROUGH } data-name-3:]

FORMAT 3:

VALUES ARE THRU

88 condition-name {-!ALQE IS } literal-1 { THROUGH } Titera1-2

. THROUGH . _
literal-3 [} THRU } literal 4:]

The clauses shown in the General Format appear in alphabetical order
along with the other Data Division clauses on the following pages.

Technical Notes

1.

2.

Each data description entry must be terminated by a period.
All semicolons and commas are optional.

The clauses may appear in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the
data-name being redefined.

The VALUE clause must not appear in a data description entry
which also contains an OCCURS clause, or in an entry which is
subordinate to an entry containing an OCCURS clause. The
latter part of this rule does not apply to condition-name
(level-88) entries.

The PICTURE clause must be specified for every elementary
item, except a USAGE INDEX, COMP-1 item, DATABASE-KEY, or
DBKEY .

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO can be specified only at the elementary level.

THE DATA DIVISION

BLANK WHEN ZERO

4.9.12 BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause causes the blanking of an item when its
value is zero.

General Format

ESLANK WHEN ZERO:I

Technical Notes

1. When the BLANK WHEN ZERO option is used and the item is zero,
the item is set to blanks.

2. BLANK WHEN ZERO can be specified only at the elementary level
and only for numeric or numeric-edited items whose usage is
DISPLAY-6, DISPLAY-7, or DISPLAY-9.

3. An asterisk used as a zero suppression symbol in a PICTURE
clause may not appear in the same entry with the BLANK WHEN
ZERO clause. More comprehensive editing features are
available in the PICTURE clause.

4. When the BLANK WHEN ZERO clause is used for an elementary
item whose PICTURE is numeric, the category of the item is
considered to be numeric-edited.

THE DATA DIVISION

Condition-name (level-88)

4.9.13
Function
The cond

of value

General

88 condition-name {

Condition-name (level-88)

ition-name (level-88) entry assigns a name to a Value or range
s of the associated data item.

Format

VALUE IS .
VALUES ARE} literal-1

THROUGH
THRU

} literal-2

. THRQUGH .
literal-3 [} ﬂﬂﬁf—_'} 11tera1—4:}

Technica

1.

1 Notes
Each condition-name requires a separate level-88 entry. This
entry contains the name assigned to the condition, and the
value or values associated with that condition.
Condition-name entries must immediately follow the data
description entry with which the condition-name is to be
associated.
A condition-name entry can be associated with any elementary
or group item except
a. another condition-name entry, or
b. a level-66 item.
Some examples of possible level-88 entries are given below.
a. 05 B-FIELD PICTURE IS 99.

88 B1 VALUE IS 3.

88 B2 VALUES ARE 50 THRU 69.

88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.

88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.
b. 02 C-FIELD PICTURE IS XXX.

88 C-YES VALUE IS "YES".

88 C-NO VALUE IS "NO ".
The data item with which the condition-name is associated is

called a conditional variable. A conditional variable may be
used to qualify any of its condition-names. If references to
a conditional variable require indexing, subscripting, or
qualification, then reference to its associated
condition-names also require the same combination of
indexing, subcripting, or gqualification.

5.

THE DATA DIVISION
Condition-name (level-88) (Cont.)

A condition-name is used- in . conditional expressions as an
abbreviation for the related condition. Thus, if the above
Data Division entries (Note ¢) are used, the statements in
each pair below are functionally equivalent.

Relational Expression Condition-Name
a. IF B-FIELD IS EQUAL TO 3.... IF Bl....
b. IF B-FIELD IS GREATER THAN IF B2....

49 AND LESS THAN 70....

c. IF B-FIELD IS EQUAL TO 20 OR IF B3....
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND 1
LESS THAN 38....

d. 1IF B-FIELD IS GREATER THAN 69 IF B4....
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96....

e. IF C-FIELD IS EQUAL TO "YES".. IF C-YES

Literal-l must always be less than literal-2, and 1literal-3
less than literal-4. The values given must always be within
the range allowed by the format given for the conditional
variable. For example, any condition-name values given for a
conditional variable with a PICTURE of 999 must be in the
range of 000 to 999.

4.9.14
Function
A data-n

FILLER s

General

level-number {

Technica

1.

2.

THE DATA DIVISION

Data-name/HLLER

Data-name/FILLER

ame specifies the name of the data being described. The word
pecifies an unreferenced portion of the logical record.

Format

data-name-l}
FILLER

1 Notes

A data-name or the word FILLER must immediately follow the
level-number in.each data description entry.

A data-name must be composed of a combination of the
characters A through Z, 0 through 9, and the hyphen. It must
contain at least one alphabetic character and must not exceed
30 characters in 1length. It must not duplicate a COBOL
reserved word. Refer to Section 1.2.3.2, User-Defined Words,
for further information.

The key word FILLER is used to name an unreferenced item in a
record (that 1is, an item to which the programmer has no
reason for assigning a unique name). A FILLER item cannot,
under any circumstances, be referenced directly in a
Procedure Division statement. However, it may be indirectly
referenced by referring to a group-level item of which the
FILLER item is a part. FILLER can be used at any level,
including the 01 level.

THE DATA DIVISION

JUSTIFIED

4.9.15 JUSTIFIED
Function
The JUSTIFIED clause specifies nonstandard positioning of data within

a receiving data item.

General Format

JUSTIFIED RIGHT
JUST LEFT

Technical Notes

1. The JUSTIFIED clause cannot be specified at a group level, or
for numeric or edited items. If neither RIGHT nor LEFT is
specified, RIGHT is assumed.

2. An item subordinate to one containing a VALUE clause cannot
be JUSTIFIED.

3. DISPLAY, DISPLAY-6, DISPLAY-7 and DISPLAY-9 items can be
JUSTIFIED.

4, The standard rules for positioning data within an elementary
data item are as follows:

a. The receiving data item is described as numeric or
numeric-edited (see definition in Notes 7 and 10 under
the PICTURE clause, Section 4.9.18.)

A numeric or numeric-edited item is justified according
to the following rules, thus the JUSTIFIED clause cannot
be used.

The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or
truncation on either end as required.

If an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character, and
the sending data is aligned according to this decimal
point.

b. The receiving data item is described as alphanumeric or
alphabetic (see definition in Notes 6 and 8 under the
PICTURE clause, Section 4.9.18).

The data is moved to the receiving character positions
and aligned at the leftmost character position with space
£ill or truncation at the right end as required.

THE DATA DIVISION

JUSTIFIED (Cont.)

When a receiving item 1is described as JUSTIFIED LEFT,
positioning occurs as in 4a above.

When a receiving data item is described with the JUSTIFIED
RIGHT clause and is larger than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with space f£ill at the left end.

When a receiving data item is described with the JUSTIFIED
RIGHT clause and is smaller than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with truncation at the left end.

Examples are given below.

03 ITEM-A PICTURE IS
X(8) VALUE IS "ABCDEFGH".

03 ITEM-B PICTURE IS
X(4) VALUE IS "WXYZ".

03 ITEM-C PICTURE IS X(6).
03 ITEM-D PICTURE IS X(6).
JUSTIFIED RIGHT.

Procedure Division statement Contents of Receiving Field

MOVE ITEM-A TO ITEM-C. [alB|C|D|E|F|
MOVE ITEM-A TO ITEM-D. [c|p|E|F|G|H|
MOVE ITEM-B TO ITEM-C. [w]x]y]z]a[a]
MOVE ITEM-B TO ITEM-D. [a]alw]x]Y]|z]

THE DATA DIVISION

Level-number

4.9.16 Level-number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, special level-numbers are used for condition-names
(level-88), noncontiguous Working-Storage items (level-77), and the
RENAMES clause (level-66).

General Format

) data-name-l}
level-number {FILLER

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers may be placed anywhere on the source line, at
or after margin A.

3. Level-number 88 is described under "condition-name
(level-88)", Section 4.9.13, and level-number 66 is described
under "RENAMES (level-66)", Section 4.9.20.

4. A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

OCCURS

THE DATA DIVISION

4.9.17 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for

repeated

data, and supplies information required for the application

of subscripts and indexes.

General Format

integer-3 I

integer-1 T0 integer-2 TIMES DEPENDING ON data-name-1
[OCCQRS [MES }

“ADECSEENE[DIéNIGHE: KEY IS data-name-2 [data-name-3]]
[INQEXED BY index-name-1 [index-name-2] ...]]

Technical Notes

1.

This clause cannot be specified in a data description entry
that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

The OCCURS clause 1is used to define tables or other
homogeneous sets of repeated data. Whenever this clause is
used, the associated data-name and any subordinate data-names
must always be subscripted or indexed when wused in all
Procedure Division statements.

All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

The integers must be positive. If integer-1 is specified, it
must have a value 1less than integer-2. No value of a
subscript can exceed integer-2 or integer-3; in addition, if
the DEPENDING option is specified, no subscript can exceed
the value of data-name-1 at the time of subscripting.

If the DEPENDING option is specified, the integer-1 TO phrase
must be included. The DEPENDING option must immediately
follow TIMES. Data-name-1 must be a positive integer, and
for efficiency should be either USAGE INDEX or USAGE COMP.
It cannot be subscripted, and if the clause appears in the
Linkage Section, data-name-1 must be either USAGE INDEX or
USAGE COMP.

The value of data-name-1 1is the count of the number of

occurrences of the item described by the OCCURS clause; its
value must not exceed integer-2 or integer-3.

4-38 January 1980

THE DATA DIViSION

Level-Number

4.9.17 Level-Number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, special level-numbers are used for condition-names
(level-88), noncontiguous Working-Storage items (level-77), and the
RENAMES clause (level-66).

General Format

data-name-l}
level-number {FILLER

MR-5-1287-81

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers can be placed.anywhere on the source 1line, at
or after margin A.

3. Level-number 88 is described under "condition-name
(level-88)", Section 4.9.14, and level-number 66 is described
under "RENAMES (level-66)", Section 4.9.21.

4, A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

THE DATA DIVISION

OCCURS

4.9.18 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for

repeated

data, and supplies information required for the application

of subscripts and indexes.

General Format

[CUR

integer-1 T0 integer-2 TIMES DEPENDING ON data-name-1
integer-3 TIMES

[{852523%?56] KEY IS data-name-2 [data-name-3] ...] e
[INDEXED BY index-name-1 [index-name-2] ...}]

MR-S-1288-81

Technical Notes

l.

This clause cannot be specified in a data description entry
that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

The OCCURS <clause 1is used to define tables or other
homogeneous sets of repeated data. Whenever this clause is
used, the associated data-name and any subordinate data-names
must always be subscripted or indexed when wused in all
Procedure Division statements.

All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

The integers must be positive. If integer-1 is specified, it
must have a value 1less than integer-2. No value of a
subscript can exceed integer-2 or integer-3; in addition, 1if
the DEPENDING option 1is specified, no subscript can exceed
the value of data-name-1 at the time of subscripting.

When a receiving item is a variable 1length data item and
contains the object of the DEPENDING ON clause, the maximum
length of the item is used, not the actual 1length of the
item.

If the DEPENDING option is specified, the integer-1 TO phrase
must be included. The DEPENDING option must immediately
follow TIMES. Data-~name-1 must be a positive integer, and
for efficiency should be either USAGE INDEX or USAGE COMP.
It cannot be subscripted, and if the clause appears 1in the

Linkage Section, data-name-1 must be either USAGE INDEX or
USAGE COMP.

The value of data—-name-1 is the count of the number of

occurrences of the item described by the OCCURS clause; its
value must not exceed integer-2 or integer-3.

4-49 October 1985

THE DATA DIVISION

PICTURE (Cont.)

represents an insertion comma!l
represents an actual decimal point!
represents an insertion blank
represents an insertion zero
represents an insertion slash

NOmWee ~

e. Symbols representing editing sign-control symbols

+ represents an editing plus sign

- represents an editing minus sign

CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and -) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture symbol can be
abbreviated to the symbol followed by (n), wheren
indicates the number of occurrences. However, some
editing symbols may not be used more than once in a data
item: "Sll' llvll, ll.il, IICR", and "DB"-

4. A maximum number of 30 symbols can appear in a picture
string. Note that the number of symbols in a picture string
and the size of the item represented are not necessarily the
same. There are two reasons for this discrepancy. First,
the abbreviated form for indicating consecutive repetitions
of a symbol may result in fewer symbols in the picture string
than character positions in the item being described. For

example, a data item having 40 alphanumeric character
positions can be described by a picture string of only 5
symbols:

PICTURE IS X(40).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols, with one exception, do not represent actual physical
character positions within the data item. The exception
involves the use of the SIGN IS SEPARATE clause, which causes
the S (arithmetic sign) to take up a character position. If
the clause is omitted, the character-string

5999v99

represents a 5-position data item. However, if the SIGN IS
SEPARATE clause 1is included, the character-string would
represent a 6-position item.

Other size restrictions for numeric and numeric-edited items
are given under the appropriate headings below.

5. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,
alphanumeric-edited, and numeric-edited. A description of
each category is given in the notes below.

1 Tf the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the function of the comma and decimal point is reversed.

4-41

THE DATA DIVISION

PICTURE (Cont.)

6.

10.

Definition of an Alphabetic Item

a.

b.

Its picture string may contain only the symbol A or B.

It may contain only the 26 letters of the alphabet and
the space.

Definition of a Numeric Item

a.

b.

Its picture string may contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture string must have from 1 to 18 digit
positions.

It may contain only the digits 0 through 9 and an
operational sign.)

Definition of an Alphanumeric Item

a.

Its picture string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all Xs.

Its contents can be any combination of characters from
the complete character set (see Section 1.2.2).

Definition of an Alphanumeric-Edited Item

a.

b.

Its picture string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B, 0 or /.

Its contents can be any combination of characters from
the complete character set.

Definition of a Numeric-Edited Item

a.

Its picture string must contain at 1least one of the
following editing symbols:

y, - *4+ - 0B CRDB §

It may also contain the symbols 9, V, or P. If you use
the CURRENCY SIGN IS clause, the new currency sign you
specify replaces the $ in the above list.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 11.

The picture string must have from 1 to 18 digit
positions.

The contents can be any combination of the digits 0
through 9 and the editing characters.

THE DATA DIVISION

PICTURE (Cont.)

represents an insertion comma'
represents an actual decimal point'
represents an insertion blank
represents an Iinsertion zero
represents an insertion slash

NQWe ~

e, Symbols representing editing sign-control symbols

+ represents an editing plus sign
- represents an editing minus sign
CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and -) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture symbol can be
abbreviated to the symbol followed by (n), where n
indicates the number of occurrences. However, the
following editing symbols can not be used more than once
in a data item: ®"s®", "vy", "_.¥, "CR", and "DB".

4, A maximum number of 38 symbols can appear in a picture
string. Note that the number of symbols in a picture string
and the size of the item represented are not necessarily the
same. There are two reasons for this discrepancy. First,
the abbreviated form for indicating consecutive repetitions
of a symbol can result in fewer symbols in the picture string
than character positions in the item being described. For
example, a data item having 40 alphanumeric character
positions can be described by a picture string of only 5
symbols:

PICTURE IS X (409).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols, with one exception, do not represent actual physical
character positions within the data item. The exception
involves the use of the SIGN IS SEPARATE clause, which causes
the S (arithmetic sign) to take up a character position. If
the clause is omitted, the character-string

5999Vv99
represents a 5-position data item. However, if the 'SIGN IS
SEPARATE clause 1is included, the character-string would
represent a 6-position item.

The total picture character-strings for an @1 data item
cannot exceed 262,143 characters.

Other size restrictions for numeric and numeric-edited items
are given under the appropriate headings below.

5. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,

! If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the function of the comma and decimal point is reversed.

4-43 October 1985

THE DATA DIVISION

PICTURE (Cont.)

alphanumeric-edited, and numeric-edited. A description of
each category is given in the notes below.

19.

Definition of an Alphabetic Item

Qe

b'

Its picture string can contain only the symbol A or B.

It can contain only the 26 letters of the alphabet and
the space.

However, no check is made at runtime to prevent a move
from an alphanumeric item storing a non-alphabetic
character.

Definition of a Numeric Item

Q.

b.

Its picture string can contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture string must have from 1 to 18 digit
positions.

It can contain only the digits # through 9 and an
operational sign.

Definition of an Alphanumeric Item

-1

b.

Its picture string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all Xs.

Its contents can be any combination of characters from
the complete character set (see Section 1.2.2).

Definition of an Alphanumeric-Edited Item

-1

b.

Its picture string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B, @ or /.

Its contents can be any combination of characters from
the complete character set.

Definition of a Numeric-Edited Item

a.

Its picture string must contain at 1least one of the
following editing symbols:

+r « *+ - @ BCRDB $§

It can also contain the symbols 9, V, and P. If you use
the CURRENCY SIGN IS clause, the new currency sign you
specify replaces the $ in the above list.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 11.

The picture string must have from 1 to 18 digit
positions.

The contents can be any combination of the digits @
through 9 and the editing characters.

4-44 _ October 1985

11.

THE DATA DIVISION

PICTURE (Cont.)

The symbols used to define the category of an elementary item
and their functions are as follows:

A

Each A in the picture string represents a character
position which can contain only a letter of the alphabet
or a space.

Each B in the picture string represents a character
position into which a space character is inserted during
editing.

Examples: (A-FLD contains the value @92469)

B~FLD picture string Result
MOVE A-FLD TO B-FLD 99B99B99 [o]o]a]2]a[a]6]9 |
MOVE A-FLD TO B-FLD 9999BBBB [o]o]2]4]alalala]

Also see Note 15, Simple Insertion Editing.

Each P in the picture string indicates an assumed decimal
point scaling position and is used to specify the
location of an assumed decimal point when the point |is
outside the positions defined for the item. Ps are not
counted in the size of the data item. They are counted
in determining the maximum number of digit positions (18)
allowed in numeric-edited items or numeric items.

Digit positions specified by P will contain =zeros when
referenced as a numeric item, as when the data-item is
moved to a numeric or numeric edited item, or as when
compared to a numeric item.

P's can appear only to the left or right of the picture
string and must appear together. The P character symbol
cannot appear in a data-item that defines a relative key.
The assumed decimal point is assumed to be to the left of
the string of Ps if the Ps are at the 1left end of the
picture string and to the right of the string of Ps if
the Ps are at the right end of the picture string. If
the V symbol is used 1in this case, it must appear in
either of those positions; 1in either case, it is
redundant.

Examples:

PPP9999 (or VPPP9999) defines a data item of four
character positions whose contents are treated as
.880nnnn during any decimal point alignment operation
(such as in a MOVE or ADD). 9PPP (or 9PPPV) defines a
data item of one character position whose contents are
treated as n#00 during any decimal point alignment
operation.

The P character symbol cannot appear in a data-item that
defines a relative key.

An S in a picture string indicates that the item has an
operational sign and retains the sign of any data stored
in it. The S must be written as the leftmost character

4-45 : . October 1985

THE DATA DIVISION

PICTURE (Cont.)

in the picture string. If S is not included, all data is
stored in the item as an absolute value and is treated as
positive in all operations. The S symbol is not counted
in the size of the data item unless the SIGN IS SEPARATE
clause 1is included, in which case it occupies one
character position.

v A V in a picture string indicates the location of the
assumed decimal point and can appear only once in a
picture string. The V does not represent a physical
character position and is not counted in the size of the
data item. If the assumed decimal point position is at
the right of the rightmost character position of the
item, the V is redundant (that is, 9999 1is functionally
equivalent to 9999V),

X Each X in a picture string represents a character
position which can contain any allowable character from
the complete character set.

A Each Z in a picture string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by spaces. Each Z is counted in
the size of the item.

* Each * in a picture string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by *. Each * is counted in the
size of the item.

Examples: (A-FLD contains the value 0#385)

B~-FLD picture string Result
MOVE A-FLD TO B-FLD 999999 [o]o]o{3]o]s5]
MOVE A-FLD TO B-FLD 229999 [a]alo]3]o0]s]
MOVE A-FLD TO B-FLD 22222Z {afalal3]o]s]
MOVE A-FLD TO B-FLD 22ZZZ.22 [a]3]o]s5].]o]o]

Also see Note 19, Zero Suppression Editing.

9 Each 9 in a picture string represents a character
position which can contain a digit, Each 9 is counted in
the size of the item.

2 Each @ in a picture string represents a character
position into which a zero is inserted. It is counted in
the size of the item. The @ symbol works in the same
manner as the B symbol.

. Each , in a picture string represents a character
position 1into which a comma is inserted. The comma is
counted in the size of the item.

/ Each / in a picture string represents a character

position into which the slash is inserted. The slash is
counted in the size of the item.

* 4-46 October 1985

THE DATA DIVISION

PICTURE (Cont.)

Examples: (A-FLD contains 005625; B-FLD contains
-005625) v
C~FLD picture string Result

MOVE A-FLD TO C-FLD ++999.99 [a]+Jo]s]6].]2]5]
MOVE B-FLD TO C-FLD ++++9.99 [s]a]-1s]6]-]2]5]
MOVE ZERO TO C-FLD ++999.99 [a]+]o]o]o].]o]0]
MOVE ZERO TO C~FLD +++++.++ [a]a]a]a]afa]a]s]
MOVE A-FLD TO C-FLD ~-=999.99 [a]a]o]s]6].] 2]5]
MOVE B-FLD TO C-FLD ==999.99 [a]-]o[5]6].]2[5]
MOVE ZERQO TO C-FLD ~=-=99.99 [a] a[a]o]o].]o]o0]
MOVE ZERO TO C-FLD ——————— [a]o[a]a]afa]a] |

Also see Note 18, Floating Insertion Editing.

Note that the + and - symbols are distinct from the S
(operational sign) symbol. Normally, the + and - symbols
are used to describe display items that are to appear on
some printed report; they provide visual sign indication
and cannot be used with items appearing as operands in
arithmetic statements.

A $ (or the symbol specified by the CURRENCY SIGN clause
in the SPECIAL-NAMES paragraph) represents the character
position into which a $ (or the currency symbol) is to be
placed. This symbol is counted in the size of the item.

Example: (A-FLD contains 345675)

B-FLD character-string Result
MOVE A-FLD TO B-FLD $9,999.99 [s[3].]4]5]6].]7]5]
MOVE A-FLD TO B-FLD $999,999.99 [s|o]o[3[,[4]|5]6].[7][5]

Also see Note 17, Fixed Insertion Editing.

The $§ symbol can also be used to perform floating
insertion editing, Floating insertion editing is
indicated by the occurrence of two or more consecutive §
symbols at the beginning of the character string. The
total number of significant positions in the editing
field must be at least one greater than the number of
significant digits in the data to be edited. The
floating § symbol floats from left to right through any
high-order zeras until a decimal point or the picture
character 9 is encountered.

THE DATA DIVISION

PICTURE (Cont.)

12,

13.

Examples: (A-FLD contains 005625)

B-FLD picture string Result
MOVE A-FLD TO B-FLD -$$9,999.99 [alsToT.Jols5]6]-]2]5]
MOVE A-FLD TO B-FLD $55,$$$.99 [a[a[a[a[s]5]6].[2]5]
MOVE ZERO TO B-FLD $$$,999.99 [a]a]als]o]o]o].[o]0]
MOVE ZERO TO B-FLD $§$,$$$.$$ [s[afajafala|afsja]a]

Also see Note 18, Floating Insertion Editing.

There are two general methods of performing editing in the
PICTURE clause:

a. 1insertion, or

b. suppression and replacement.

There are four types of insertion editing available:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:
a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

The type of editing that may be performed upon an item
depends on the category to which the item belongs.

Category Type of Editing Allowed
Alphabetic Simple 1nsertion: B only
Numeric None

Alphanumeric None

Alphanumeric-edited| Simpse insertion: 0, B and /

&
Numeric-edited All (except for the restriction given in
Note 14)

14.

15.

16.

17.

THE DATA DIVISION
PICTURE (Cont.)

Floating insertion editing and zero suppression/replacement
editing are mutually exclusive in a PICTURE clause. Only one
type of replacement can be used with zero suppression in a
PICTURE clause.

Simple Insertion Editing (, B 0 /)

The , (comma), B (space), 0 (zero), and / (slash or- stroke)
constitute those editing symbols used in simple insertion
editing. These insertion characters represent the character
position in the item into which the character will be
inserted. These symbols are counted in the size of the item.

Special Insertion Editing (.)

The . (decimal point) symbol is used in special insertion
editing. In addition to its use as an insertion character,
it also represents the position of the decimal point for
decimal point alignment. This symbol is counted in the size
of the item. The symbols . and V (assumed decimal point) are
mutually exclusive in a PICTURE clause. Since the . cannot
be the last symbol in the character-string, it must be
immediately followed by one of the line-ending characters,
either space or carriage return.

Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control
characters (+ - CR DB) constitute the characters used in
fixed insertion editing. Only one $ and one of the -editing
sign control characters can be used in a PICTURE
character-string. When the symbols CR or DB are used, they
represent two character positions in determining the size of
the item. The symbols + or - when used must be the leftmost
or rightmost character positions to be counted in the size of
the item. The $ when used must be the leftmost character
position to be counted in the size of the item, except that
it can be preceded by a + or - symbol. A fixed insertion
editing character appears in the same character position in
the edited item as it occupied in the PICTURE
character-string.

When the $ is used as a floating insertion editing character,
the picture string must contain at least one $ more than the
maximum number of significant digits in the item to be
edited. If you use a comma and the § simultaneously for
editing, there must always be at least two $ to the left of
the comma because one $ will always be printed; there is no
place for a significant digit to the left of the comma if you
have used only one $. (If the item has a picture of $,$8$$
then no digit will ever appear to the left of the comma; a §
will always be there.) A comma is omitted only when what
appears to its left consists only of =zeroes. (With the
picture string $,$$$ the comma is never omitted.)

THE DATA DIVISION

PICTURE (Cont.)

18.

Editing sign control symbols produce the following results
depending on the value of the data being edited.

Editing Symbol in Result
PICTURE Data Positive Data Negative
character~string

+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing ($$ ++ --)

The $ and the editing sign control symbols + and - are the
floating insertion editing characters and are mutually
exclusive in a given PICTURE string.

Floating 1insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the
allowable insertion characters to represent the leftmost
numeric character positions into which the insertion
characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion
characters or to the immediate right of this string are part
of the floating string.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing:

a.

Representing any two or more of the leading numeric
character positions on the left of the decimal point by
the insertion character. The result 1is that a single
insertion character will be placed in the character
position immediately preceding the leftmost nonzero digit
of the data being edited or in the character position
immediately preceding the decimal point, or in the
character position represented by the rightmost insertion
character, whichever is encountered first.

Representing all numeric character positions in the
character-string by the insertion character. If the
value is not zero, the result is the same as when the
insertion character appears only to the left of the
decimal point. If the value is zero, the entire item is
set to spaces.

A picture string containing floating insertion characters
must contain at 1least one more floating insertion
character than the maximum number of significant digits
in the item to be edited. For example, a data field
containing five significant digit positions requires an
editing field of at least six significant positions.

All floating insertion characters are counted in the size
of the item.

19.

THE DATA DIVISION.
PICTURE (Cont.)

Zero suppression Editing (Z *)

The suppression of leading zeros and commas in a data field
is indicated by the use of the Z or the * symbol in a picture
string. These symbols are mutually exclusive in a given
picture string. Each suppression symbol is counted in the
size of the item. If a 2 is used, the replacement character
is a space. If an * is used, the replacement character is an
*, Zero suppression and replacement is indicated by a string
of one or more Zs or *s to represent the leading numeric
character positions which are to be replaced when the
associated character position in the data contains a leading
zero. Any of the simple insertion characters embedded in
this string of zero suppression symbols or to the immediate
right of this string are part of the string.

If the zero suppression symbols appear only to the left of
the decimal point, any leading zero in the data that
corresponds to a zero suppression symbol in the string is
replaced by the replacement character.

Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol in the string or at the
decimal point, whichever is encountered first.

If all numeric character positions in the picture string are
represented by the suppression symbol and the value of the
data is not =zero, the result 1is the same as 1if the
suppression characters were only to the left of the decimal
point. If the value is zero, the entire item (including any
sign) will be set to the replacement character (with the
exception of the decimal point if the suppresson symbol is an
*)

The * and the clause BLANK WHEN ZERO may not appear in the
same entry.

THE DATA DIVISION

PICTURE (Cont.)

20.

21.

Example:

(A-FLD contains 023456, B--FLD contains 001200)

R-FLD Result

PICTURE of. MOVE

String
MOVE A-FLD TO R-FLD khkk Kk *234.56
MOVE B-FLD TO R-FLD XXXX. XX **¥12.00 (1)
MOVE A-FLD TO R-FLD 227272.2% 234.56 (1)
MOVE B-FLD TO R-FLD 2227 .27 12.00
MOVE ZERO TO R-FLD *hkk kK kK kk ()
MOVE ZERO TO R-FLD 222%2.22 AAAAAAA (3)
MOVE ZERO TO R-FLD FEERE KK kkkkk KK (4)
MOVE ZERO TO R-FLD +2%222.272 AAAAAAAA (5)

(1) Zero supression does not take place to the right of
the decimal point.

(2) Decimal point is not suppressed.

(3) Decimal point is replaced by a space.

(4) Plus sign (+) is replaced by a space.

(5) Both sign and decimal point are replaced by space.

The symbols + - * Z and $ when used as floating replacement
characters are mutually exclusive within a given picture
string.

Figure 4-4 shows the order of precedence of the various
picture string symbols. Each "Y" on the chart indicates that
the symbol in the top row directly above can precede the
symbol at the left of the row in which the "Y" appears.

{ }indicate that the symbols are mutually exclusive.

The P and the fixed insertion + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear
to the left of any numeric positions in the string.

9P, 9+, and 9- represent the case where these symbols appear
to the right of any numeric positions in the string.

The Z, *, and the floating ++, --, and $$ also appear twice.

Z., *., $$., and --. represent the case where these symbols
appear before the decimal point position.

.2, .*, .8$, .++, and .-- represent the case where these
symbols appear following the decimal point position.

FIXED INSERTION

OTHER

THE DATA DIVISION

PICTURE (Cont.)
FIXED INSERTION OTHER
+9| fo-\l/cr A Z M2\ o e s

8o, |. {j{?-}{os} s [&l polop|s|v {}{*} 9{__}-__}55. 5
s vy |vy|vy|v]yY v|vlvy vlvy v vl vly|v]y
o [y |vylvy|y|y vlvlvy vylvyivy |yl vy|ylvl|y
v lylvy vyl v Y Y vylvy |y |yl vy|y|v|y
Clvlvly Y % Y % v] y Y
{+9
o) v v
2
9-} vyivylvy |y % v |v vy |y |y vy
C
{DS viv|vy |y v v |y vy |v |y v v
$ Y Y Y
A
x |v |y Y %
P9 Y v Y v |v
o v vy vlv|vly vy |y Y v|y Y
s
viv|y]|y viv|vyly v oly Y Y| v %
7.
L*.} viv|y Y Y Y
¥i
{*} vyiv|y|v]y Y Y v |y |v
o Iy lvlivlvly vlv|vy vy lv|y vy %
G .
{--.} vy ly Y Y
s
{--} vy v |y |y Y Y Y v |v
ss. [y vy Y Y
sslv (v |y|y]y Y Y vy

Figure 4-4 Picture String Character Chart

MR-5-024-79

THE DATA DIVISION

REDEFINES

4.9.19 REDEFINES

Function

The REDEFINES clause allows the same memory area to be allocated to
two or more data items.

General Format

[REDEFINES data-name-2 |

Technical Notes

1.

The REDEFINES clause, when used, must immediately follow
data-name-1.

The level-numbers of the data-name-1 and data-name-2 must be
identical.

This clause must not be used for level-number 66 or 88 items.
Also, " it must not be used for level-0l1 entries in the File
Section; implicit redefinition is provided by specifying
more than one data-name in the DATA RECORDS ARE clause in the
FD. However, the REDEFINES clause may be used to redefine an
item whose picture contains the OCCURS clause.

When the level-number of the data-names is other than
level-01, the storage area for data-name-2 should be of the
same size as data-name-1l. FILLER items may be used to comply
with this rule.

The REDEFINES entry must immediately follow the entries
describing data-name-2.

The redefinition entries cannot contain VALUE clauses.
Data-name-2 must not be qualified.

The following example illustrates the use of the REDEFINES

entry. The entries shown cause AREA-A and AREA-B to occupy
the same area in memory.

03 AREA-A USAGE DISPLAY-6.
04 FIELD-1 PICTURE IS X(7).
04 FIELD-2 PICTURE IS A(13).
04 FIELD-3.
05 SUBFIELD-1 PICTURE IS
S999V99 USAGE IS COMP.
05 SUBFIELD-2 PICTURE IS
S999V99 USAGE IS COMP.
03 AREA-B REDEFINES AREA-A USAGE DISPLAY-6.
04 FIELD-A PICTURE IS X(22).
04 FIELD-B PICTURE IS X(5).
04 FILLER PICTURE IS X(9).

THE DATA DIVISION
REDEFINES (Cont.)

Note how the length of each area is calculated so that AREA-B
can be defined so that its size is equal to that of AREA-A.

AREA-A: FIELD-1 7 6-bit characters (DISPLAY-6
assumed)

FIELD-2 13 6-bit characters (DISPLAY-6
assumed)

FIELD-3 4 6-bit characters (not used

because COMP items must start
at a new word boundary)
SUBFIELD-1 6 6-bit characters (COMP items
occupy one word, or six 6-bit
: character positions)
SUBFIELD-1 6 6~-bit characters (COMP items
occupy one word, or six 6-bit
character positions)
Total 6-bit characters 36

AREA-B: FIELD-A 22 6-bit characters (DISPLAY-6

assumed)

FIELD-B 5 6-bit characters (DISPLAY-6
assumed)

FILLER 9 6-bit characters (needed to
make AREA-B size equal to
AREA-A)

Total 6-bit characters 36

THE DATA DIVISION

RENAMES (level-66)

4.9.20
Function
The RENA

of eleme

General

66 data-name-1 RENAMES data-name-2

RENAMES (level-66)
MES clause permits alternate, possibly overlapping, groupings
ntary items.

Format

{ THROUGH

THRU } data-name-3

Technical Notes

1.

All RENAMES entries associated with items in a given record
must immediately follow the last data description entry for
that record.

01 data-name-a

(data description entries)

(level-66 entries associated with this logical record)
01 data-name-b.

Data-name-1 cannot be used as a qualifier, and can be
qualified only by the names of the level-0l1l or FD entries
associated with it.

The words THRU and THROUGH are equivalent.

Data-name-2 and data-name-3 must be the names of items in the
associated logical record and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number
of 01, 66, 77, or 88. Neither of these data-names can have
an OCCURS clause in 1its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data
description entry.

Data-name~-2 must precede data-name-3 in the record
description, and data-name-3 cannot be subordinate to
data-name-2. If there 1is any associated redefinition
(REDEFINES), the ending point of data-name-3 must logically
follow the beginning point of data-name-2. When data-name-3
is specified, data-name-1 is a group item that includes all
elementary items starting with data-name-2 (if data-name-2 is
an elementary item) or the first elementary item in
data-name-2 (if data-name-2 is a group item) and concluding
with data-name-3 (or the last elementary item in
data-name-3).

THE DATA DIVISION

RENAMES (level-66) (Cont.)

If data-name-3 is not specified, data-name-2 can be either a
group item or an elementary item. If it is a group item,
data-name-1 is treated as a group item and includes all
elementary items in data-name-2; if data-name-2 1is an
elementary item, data-name-1 is treated as an elementary item
with the same descriptive clauses.

The following examples illustrate the wuse of the RENAMES
entry.

01 RECORD-NAME.
02 FIRST-PART.
03 PART-A.
04 FIELD-1 PICTURE IS ...
04 FIELD-2 PICTURE IS ...
04 FIELD-3 PICTURE IS ...

03 PART-B.
04 FIELD-4 PICTURE IS ...
04 FIELD-5.

05 FIELD-5A PICTURE IS ...
05 FIELD-5B PICTURE IS ...
03 SECOND-PART.
03 PART-C.
04 FIELD-6 PICTURE IS ...
04 FIELD-7 PICTURE IS ...
66 SUBPART RENAMES PART-B THRU PART-C.
66 SUBPART1 RENAMES FIELD-3 THRU SECOND-PART.
66 SUBPART2 RENAMES FIELD-5B THRU FIELD-7.
66 AMOUNT RENAMES FIELD-7.

SIGN

THE DATA DIVISION

4.9.21 SIGN

Function

The SIGN clause specifies the position and the mode of representation
of the operational sign.

General Format

LEADING
I:ESIGN Is:] TRAILING } [SEPARATE CHARACTER]:|

Technical Notes

1.

The optional SIGN clause, if present, specifies the position
and the mode of representation of the operational sign for
the numeric data description entry to which it applies, or
for each numeric data description entry subordinate to the
group to which it applies. The SIGN clause applies only to
numeric data description entries whose PICTURE contains the
character S; the S indicates the presence of an: operational
sign. However, it does not indicate the representation or
the position of the sign.

The numeric data description entries to which the SIGN clause
applies must be described as USAGE IS DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

If the CODE-SET clause is specified, any signed numeric data
description entries associated with that file description
entry must be described with the SIGN IS SEPARATE clause.

A numeric data description entry whose PICTURE contains the
character S, but to which no optional SIGN clause applies,
has an operational sign which is associated with the trailing
digit position of the elementary item.

If the optional SEPARATE CHARACTER phrase is not present, the
following rules apply:

a. The operational sign will be presumed to be associated
with the trailing digit position of the elementary
numeric data item.

b. The letter S in a PICTURE character-string is not counted
in determining the size of the item (in terms of standard
data format characters).

THE DATA DIVISION
SIGN (Cont.)

If the optional SEPARATE CHARACTER phrase is present, the
following rules apply: ‘

a. There is no default condition for the operational sign in
this case. You may specify the SEPARATE CHARACTER phrase
only when either LEADING or TRAILING is also specified.

b. The letter S in a PICTURE character-string is counted 1in
determining the size of the item (in terms of standard
data format characters). :

c. The operational signs for positive and negative are the
standard data format characters + and -, respectively.

d. The wvarious possiblities for the SIGN and SEPARATE
CHARACTER clauses are illustrated below: (value is -111)

Options SIXBIT
Representation

none 000000113

SIGN LEADING 100000111

SIGN TRAILING 00000011J

SIGN LEADING SEPARATE -000000111

SIGN TRAILING SEPARATE - 000000111~

Every numeric data description entry whose PICTURE contains
the character S is a signed numeric data description entry.
If a SIGN clause applies to such an entry and conversion is
necessary for purposes of computation or comparisons,
conversion takes place automatically.

THE DATA DIVISION

SYNCHRONIZED

4.9.22
Function
The SYNC

item wit

General

SYNC

Technica

1.

2.

SYNCHRONIZED

HRONIZED clause specifies the positioning of an elementary
hin a computer word (or words).

Format

SYNCHRONIZED LEFT
RIGHT

1 Notes

This clause can appear only in the data description of an
elementary item.

This clause is optional. If you omit it the default is
SYNCHRONIZED LEFT.

This clause specifies that the item being defined is to be
placed in an integral number of computer words and that it is
to begin or end at a computer word boundary. No other
adjacent fields are to occupy these words. 'The unused
positions, however, must be counted when calculating:

a. the size of any group to which this elementary item
belongs, and

b. the computer memory allocation when the item appears as
the object of a REDEFINES clause. However, when a
SYNCHRONIZED item is referenced, the original size of the
item (as indicated by the PICTURE clause) is used in
determining such things as truncation, justification, and
overflow.

SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to
be positioned in such a way that it will begin at the left
boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is
to be positioned in such a way that it will terminate at the
right boundary of a computer word.

When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item is
SYNCHRONIZED.

Any FILLER required to position the item as specified will be
automatically generated by the compiler. The content of this
FILLER is indeterminate.

THE DATA DIVISION

SIGN (Cont.)

If the optional SEPARATE CHARACTER phrase is present, the
following rules apply:

a. There is no default condition for the operational sign in
this case. You can specify the SEPARATE CHARACTER phrase
only when either LEADING or TRAILING is also specified.

b. The letter S in. a PICTURE character-string is counted in
determining the size of the item (in terms of standard
data format characters).

c. The operational signs for positive and negative are the
standard data format characters + and -, respectively.

d. The various possiblities for the SIGN and SEPARATE
CHARACTER clauses are illustrated below: (value is -111)

Options SIXBIT
Representation

none 000000113

SIGN LEADING 100000111

SIGN TRAILING 00000011J

SIGN LEADING SEPARATE -000000111

SIGN TRAILING SEPARATE 000000111~

Every numeric data description entry whose PICTURE contains
the character S is a signed numeric data description entry.
If a SIGN clause applies to such an entry and conversion is
necessary for purposes of computation or comparisons,
conversion takes place automatically.

THE DATA DIVISION
SYNCHRONIZED

4.9.23 SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an
item within a computer word (or words).

General Format

SYNCHRONIZED LEFT
SYNC RIGHT

MR-5-1293-81

Technical Notes

1. This clause can appear only in the data descrip
elementary item.

2. This clause is optional. If you omit it the
SYNCHRONIZED LEFT.

3. This clause specifies that the item being defined
placed in an integral number of computer words an
to begin or end at a computer word boundary.
adjacent fields are to occupy these words.
positions, however, must be counted when calculat

a. the size of any group to which this elem
belongs, and

b. the computer memory allocation when the item
the object of a REDEFINES clause. Howe
SYNCHRONIZED item is referenced, the original
item (as indicated by the PICTURE clause
determining such things as truncation, justif
overflow.

4. SYNCHRONIZED LEFT or SYNC LEFT specifies that the
be positioned in such a way that it begins
boundary of a computer word. For example,

21 RECORD-A,
@2 FIELD-A PIC XX SYNC LEFT.
82 FIELD-B PIC X.

MOVE "AB" TO FIELD-A.
MOVE "C" TO FIELD-B.

4-62

elementary

tion of an

default is

is to be
d that it is
No other

The unused
ing:

entary item

appears as
ver, when a
size of the
) is used in
ication, and

item is to
at the left

October 1985

THE DATA DIVISION

SYNCHRONIZED (Cont.)
is stored as (in SIXBIT):

A B (FIELD-A)

c : (FIELD-B)

5. SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is

to be positioned in such a way that it terminates at the
right boundary of a computer word. For example,

@1 RECORD-A. _
@2 FIELD-A PIC X.
g2 FIELD-B PIC XX SYNC RIGHT.

3

MOVE "A"™ TO FIELD-A.
MOVE "BC" TO FIELD-B.

is stored as (in SIXBIT):

A (FIELD-A)

B o (FIELD-B)

6. Any FILLER required to position the itenm

automatically generated by the compiler.
FILLER is indeterminate.

as specified is
The content of this

4-62.1 October 1985

THE DATA DIVISION

(THIS PAGE INTENTIONALLY LEFT BLANK.,)

4-62,2

THE DATA DIVISION

USAGE (Cont.)

COMPUTATIONAL (COMP)

COMP is equivalent to COMPUTATIONAL.

A COMPUTATIONAL item represents a value to be wused in
computations and must be numeric. 1Its picture string can
contain only the symbols: 9 S V P. Its value 1is
represented as a binary number with an assumed decimal
point. '

If a group item 1is described as COMPUTATIONAL, the
elementary items in the group are COMPUTATIONAL.
However, the group itself is not COMPUTATIONAL and cannot
be used as an operand in arithmetic computations. See
Note 3 above.

COMPUTATIONAL items of 10 or fewer decimal positions will
be SYNCHRONIZED RIGHT in one computer word.
Computational items of more than 10 decimal positions
will be SYNCHRONIZED RIGHT in two full computer words.
The maximum size of a COMP item is 18 digits.

The following illustrations give the format of a
COMPUTATIONAL item. ‘

'— sign

| 35

1-WORD COMPUTATIONAL ITEM

r— sign

L , |

0

1 35

not used
% |

! 2-WORD COMPUTATIONAL ITEM 3

COMPUTATIONAL-1 (COMP-1)

a.

b.

COMP-1 is equivalent to COMPUTATIONAL-1.

A COMPUTATIONAL-1 item can contain a value, in floating
point format, to be wused in computations. It must be
numeric. A COMP-1 item must not have a PICTURE.

If a group item is described as COMPUTATIONAL-1, the
elementary items within the group are COMPUTATIONAL-1.
However, the group item itself is not COMPUTATIONAL-1 and
cannot be used as an operand in arithmetic computations.
See Note 3 above.

COMPUTATIONAL-1 items will be SYNCHRONIZED in one full
computer word.

USAGE (Cont.)

THE DATA DIVISION

e. The following 1illustration gives the format of a
COMPUTATIONAL-1 item. i
f——— sign
hinary
mantissa
exponent
0 9 35

COMPUTATIONAL-3 (COMP-3)

COMP-3 is equivalent to COMPUTATIONAL-3.

A COMP-3 item's picture string can contain only the
symbols 9, S, V, P. 1Its value is represented as a packed
decimal number with an assumed decimal point.

If a group item is declared as COMP-3 the elementary
items in the group are COMP-3. However, the group item
itself is not COMP-3 and cannot be used as an operand in
arithmetic computations. See Note 3 above.

The maximum size of a COMP-3 item is 18 decimal digits.
The following illustration gives the format of a COMP-3

item. Note that bits 0, 9, 18 and 27 of the word are not
used.

//

A v

S N

13 17 18 22 26 27 31 35

COMP-3 items may be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT.

COMP-3 items may share a computer word with other COMP-3
items or with DISPLAY-9 items. However, COMP-3 items
will always begin at one of the following bit positions
in a word: 1, 10, 19, 28.

The actual size of a COMP-3 item in memory 1is at least
four bits 1larger and may be nine bits larger than the
number of character positions because the sign is stored
in the last four bits of the item and the item is stored
right justified on a nine-bit byte boundary.

The octal values 12, 14, and 16 represent plus signs and
the octal values 13 and 15 represent minus signs. The
octal value 17 represents the nonprinting plus sign.
Although octal 12, 14 and 16 represent plus signs, the
sign given to the positive result of any arithmetic
operation will be 14. Similarly, the minus sign given to
the negative result of any arithmetic operation will be
15.

THE DATA DIVISION
USAGE (Cont.)

The nonprinting plus sign is actually an absolute value
indicator. Any positive or negative number which is
moved into an item with this sign will receive this sign.
In arithmetic computations and numeric editing
operations, items containing the nonprinting plus sign
are treated as positive.

DISPLAY

a. DISPLAY is equivalent to DISPLAY-6. However, you may
change DISPLAY to be DISPLAY-7 or 9 with the DISPLAY IS
clause. You may also cause the compiler to consider all
DISPLAY items to be DISPLAY-9 by using the /X switch when
compiling your program.

DISPLAY-6

a. DISPLAY is equivalent to DISPLAY-6 when the /X switch is
not given in the compiler command string.

b. A DISPLAY-6 item represents a string of 6-bit characters.
Its picture string may contain any picture symbols.
Refer to Appendix C for the SIXBIT collating sequence.

c. DISPLAY-6 items may be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired. Otherwise, they may share a computer
word with other DISPLAY-6 items.

d. The illustration below given the format of a DISPLAY-6
word.

0 6 12 18 24 30 35

e. If the /X switch has not been included in the compiler
command string, and the USAGE clause is omitted for an
elementary item, its USAGE is assumed to be DISPLAY-6.

DISPLAY-7

a. A DISPLAY-7 item represents a string of 7-bit ASCII
characters. Its picture string may contain any picture
symbols.

b. DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired; otherwise, they may share a computer
word with other items. If the item 1is SYNCHRONIZED
RIGHT, the last character of the item will end in bit 34
of a computer word. :

c. Bit 35 of a word represented in this format 1is never
used.

d. The maximum 1length of a DISPLAY-7 item is 4,096

characters.

THE DATA DIVISION

USAGE (Cont.)

l0.

e.

The illustration below gives the format of a DISPLAY-7
word.

« S

DISPLAY-9

a.

b.

DISPLAY is equivalent to DISPLAY-9 when the /X switch is
included in the command string to the compiler.

A DISPLAY-9 1item represents a string of EBCDIC
characters. Its picture string may contain any picture
symbol.

DISPLAY-9 items may be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT as desired; otherwise, they may share a computer
word with other DISPLAY-9 or COMP-3 items. If the item
is SYNCHRONIZED RIGHT, the last character of the item
will end in bit 35 of a computer word.

The maximum length of a DISPLAY-9 item is 4,096
characters.

The illustration below gives the format of a DISPLAY-9
item. Note that bits 0, 9, 18, and 27 are not used.

11.

89 1718 2627 35

If the USAGE clause is omitted for an elementary item and
the /X switch has been included in the compiler command
string, its USAGE is assumed to be DISPLAY-9 .

INDEX

a.

An elementary item described as USAGE INDEX is called an
index data-item. It is treated as a COMP item with
PICTURE S9(5) and can be used as a COMP item.

An index data-item must not have a PICTURE.

If a group item is described as INDEX, the elementary
items within the group are treated as INDEX. However,
the group item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

Index data items and index-names (defined in the OCCURS
clause by the INDEXED BY option) are equivalent.

If an index-name is defined in an OCCURS <clause, it
cannot be defined elsewhere.

4-66

THE DATA DIVISION

USAGE (Cont.)

The octal values 12, 14, and 16 represent plus signs and
the octal wvalues 13 and 15 represent minus signs. The
octal value 17 represents the nonprinting plus sign.
Although octal 12, 14 and 16 represent plus signs, the
sign given to the positive result of any arithmetic
operation is 14, Similarly, the minus sign given to the
negative result of any arithmetic operation is 15.

The nonprinting plus sign is actually an absolute wvalue
indicator. Any positive or negative number that is moved
into an item with this sign receives this sign. In
arithmetic computations and numeric editing operations,
items containing the nonprinting plus sign are treated as
positive.

DISPLAY

-1

DISPLAY is equivalent to DISPLAY-6. However, you can
change DISPLAY to be DISPLAY-7 or 9 with the DISPLAY IS
clause. You can also cause the compiler to consider all
DISPLAY items to be DISPLAY-9 by using the /X switch when
compiling your program.

The maximum size of any group item in the FILE SECTION is
4095 characters (7777). The maximum size of any group
item in the WORKING-STORAGE SECTION is 262,143 characters
(777777). These maximum sizes apply to DISPLAY-6,
DISPLAY-7, and DISPLAY-9 usage.

DISPLAY-6

-

DISPLAY is equivalent to DISPLAY-6 when the /X switch |is
not given in the compiler command string, or the DISPLAY
IS clause is not present.

A DISPLAY-6 item represents a string of 6-bit characters.
Its picture string can contain any picture symbols.
Refer to Appendix C for the SIXBIT collating sequence.

DISPLAY-6 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired. Otherwise, they can share a computer
word with other DISPLAY-6 items.

The illustration below given the format of a DISPLAY-6
word.

0 6 12 18 24 30 35
MR-S-1022-81

If the /X switch has not been included in the compiler
command string, and the USAGE clause is omitted for an
elementary item, its USAGE is assumed to be DISPLAY-6.

DISPLAY-7

Ae

A DISPLAY-7 item represents a string of 7-bit ASCII
characters, Its picture string can contain any picture
symbols.

4-67 October 1985

THE DATA DIVISION

USAGE (Cont.)

19.

11.

b. DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired; otherwise, they can share a computer
word with other items. If the item 1is SYNCHRONIZED
RIGHT, the last character of the item ends in bit 34 of a
computer word.

c. Bit 35 of a word represented in this format is never
used. :

d. The maximum 1length of a DISPLAY-7 item is 4,095
characters.

e. DISPLAY is equivalent to DISPLAY-7 when the DISPLAY IS
DISPLAY-7 clause is present.

f. The illustration below gives the format of a DISPLAY-7
word.

0 7 14 21 28 35
MR-S-1023-81

DISPLAY-9

a. DISPLAY is equivalent to DISPLAY-9 when the /X switch |is
included in the command string to the compiler, or
DISPLAY IS DISPLAY-9 clause is present.

b. A DISPLAY-9 item represents a string of EBCDIC
characters. Its picture string can contain any picture
symbol. .

c. DISPLAY-9 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT as desired; otherwise, they can share a computer
word with other DISPLAY-9 or COMP-3 items. If the item
is SYNCHRONIZED RIGHT, the 1last character of the item
ends in bit 35 of a computer word.

d. The maximum length of a DISPLAY-9 item is 4,095
characters.

e. The illustration below gives the format of a DISPLAY-9

item. Note that bits @, 9, 18, and 27 are not used.

89 1718 262

~

MR-S5-1024-81

f. If the USAGE clause is omitted for an elementary item and
the /X switch has been included in the compiler command
string, its USAGE is assumed to be DISPLAY-9 .

INDEX

a. An elementary item described as USAGE INDEX is called an
index data-item. It is treated as a COMP item with PICT
URE S9(5) and can be used as a COMP item.

b. An index data-item must not have a PICTURE.

4-68 October 1985

THE DATA DIVISION

VALUE (Cont.)

The VALUE clause must not conflict with other clauses in the
data description entry or in the data description entries
within the hierarchy of the item. The following rules apply:

a. If the category of an item is numeric, all 1literals in
the VALUE clause must be numeric. All literals in a
VALUE clause must have a value within the range of values
indicated by the PICTURE clause; for example, an item
with PICTURE PPP9 may have only the values in the range
.0000 through ,0009.

b. If the category of the item is alphabetic or
alphanumeric, all 1literals in the VALUE clause must be
nonnumeric literals. The literal will be aligned
according to the normal alignment rules (see the
JUSTIFIED clause, Section 4.9.15) except that the number
of characters in the literal must not exceed the size of
the item.

c. If the category of an item is numeric-edited or
alphanumeric~edited, no editing of the value is performed
in the VALUE clause.

d. The USAGE of the literal agrees with the USAGE of the
item. Thus, if the item has USAGE DISPLAY-6, the literal
also has USAGE DISPLAY-6 and its value must contain legal
SIXBIT characters.

The figurative constants SPACE(S), ZERO(E) (S8), QUOTE(S),
LOW~-VALUE(S), and HIGH-VALUE(S) may be substituted for a
literal. If the 1item is numeric, only ZERO (E) (S),
LOW~VALUE (S) , and HIGH~VALUE(S) are allowed.

THE DATA DIVISION

Report Description (RD)

4.9.25
Function
The Repo

structur

General

Report Description (RD)

rt Description furnishes information concerning the physical
e for a report.

Format

RD report-name

[CODE mnemonic-name]

[
[

CONTROL IS FINAL
CONTROLS ARE

identifier-1 [identifier-21 ...
FINAL identifier-1 [identifier-2)

LIMIT 15 . LINE
PAGE [LIMITS ARE } integer-1 { LINES }

HEADING integer-2 | [FIRST DETAIL integer-3]

LAST DETAIL integer-4] [FOOTING integer-5]]

Technical Notes

1.

The order of appearance of the optional clauses is
immaterial.

A fixed data-name PAGE-COUNTER is automatically generated for
each RD entry.

Its function is to contain the current page number of a
report. It is a COMPUTATIONAL item; 1its size is equal to
the size of the largest field that refers to it in a SOURCE

clause. The contents of the PAGE-COUNTER are set to 1 by the
INITIATE statement.

The fixed data-name LINE-COUNTER is automatically generated
for each RD entry. 1Its function is to contain the current
line number within a report page. It is a COMPUTATIONAL

item; its size is based on the number of lines specified in
the PAGE-LIMIT clause.

THE DATA DIVISION

VALUE (Cont.)

The VALUE clause must not conflict with other clauses in the
data description entry or in the data description entries
within the hierarchy of the item. The following rules apply:

a. If the category of an item is numeric, all 1literals in
the VALUE clause must be numeric. All literals in a
VALUE clause must have a value within the range of values
indicated by the PICTURE clause; for example, an item
with PICTURE PPP9 can have only the values in the range
.0000 through .0009.

b. If the category of the item is alphabetic or
alphanumeric, all 1literals in the VALUE clause must be
nonnumeric literals. The literal is aligned according to
the normal alignment rules (see the JUSTIFIED clause,
Section 4.9.16) except that the number of characters in
the literal must not exceed the size of the item.

c. Initialization takes place independent of any BLANK WHEN
ZERO or JUSTIFIED clause that may be specified.

d. If the category of an item |is numeric-edited or
alphanumeric-edited, no editing of the value is performed
in the VALUE clause.

e. The USAGE of the literal agrees with the USAGE of the
item. Thus, if the item has USAGE DISPLAY-6, the literal
also has USAGE DISPLAY-6 and its value must contain legal
SIXBIT characters.

The figurative constants SPACE(S), ZERO(E)(S), QUOTE(S),
LOW-VALUE(S), and HIGH-VALUE(S) <can be substituted for a
literal. If the item is numeric, only ZERO(E) (S),
LOW~VALUE (S), and HIGH-VALUE (S) are allowed.

Report

THE DATA DIVISION

Description (RD)

4.9.26 Report Description (RD)

Function

The Report Description furnishes information concerning the physical
structure for a report.

General Format

RD report-

[CODE

name

mnemon1c-name]
A

FINAL identifier-1 [identifier-2] .

FINAL
NT
[%%%NT%%%SIiRE} {ident1fier 1 [identifier-2] . ;]

[PAGE

Technical

l.

2.

LIMIT IS 1 . LINES
LIMITS ARES integer-1 i nfg

[HEADING integer-] [FIRST DETAIL 1nteger—3]

[LAST DETAIL integer-] [FOOTING integer-S]J -

MR-S-1296-81

Notes

The order of appearance of the optional clauses is
immaterial.

A fixed data-name PAGE-COUNTER is automatically generated for
each RD entry.

Its function is to contain the current page number of a
report. It is a COMPUTATIONAL item; its size is equal to the
size of the largest field that refers to it in a SOURCE
clause. The contents of the PAGE-COUNTER are set to 1 by the
INITIATE statement.

The fixed data-name LINE-COUNTER is automatically generated
for each RD entry. Its function is to contain the current
line number within a report page. It is a COMPUTATIONAL
item; 1its size is basgd on the number of lines specified in
the PAGE-LIMIT clause. You cannot change the value of the
LINE-COUNTER.

4-72 October 1985

THE DATA DIVISION

Report Description (RD) (Cont.)

PAGE-COUNTER or LINE-COUNTER can be referenced as 1if either
were any data-name. Either must be qualified by the
report-name if more than one RD entry 1is present 1in the
program,

Each of the above clauses appears in this chapter separately,
in alphabetical order.

4-73 October 1985

THE DATA DIVISION

CODE

4.9.27 CODE

Function
The CODE clause defines a unique string of one or more characters that
is affixed to each line of the report.

General Format

[:SQQE mnemonic-nam{]

MR-5-1297-81

Technical Notes

1. This clause is necessary only if more than one report is to
be written in a single file.

2. Mnemonic-name is defined in the SPECIAL-NAMES paragraph of
the Environment Division, described in Section 3.1.4.

3. The character string represented by mnemonic-name is affixed
to the beginning of each report line, and is used to uniquely
define the lines of separate reports written in one file.

4. The number of characters represented by mnemonic-name must be
the same for the codes of all reports in the same file.

THE DATA DIVISION

CONTROL

4.9.28 CONTROL

Function

The CONTROL clause indicates the identifiers that control the printing
of totals in the report.

General Format

CONTROL 1S FINAL
CONTROLS ARE

fdentifier-1 [identifier-2] ...
FINAL identifier-1 [identifier-2]

MR-S-1298-81

Technical Notes

l.

2.

The CONTROL clause 1is required when CONTROL HEADING or
CONTROL FOOTING report groups are specified.

The identifiers specify the control hierarchy £for this
report. They are listed in order from major to minor; FINAL
is the highest level of control, identifier-1 1is the major
control, 1identifier-2 is the intermediate control, etc. The
last identifier specified is the minor control.

Identifiers must not be defined in the Report Section. Each
identifier in the CONTROL clause must identify a different
data item., TIdentifiers can be qualified, but they cannot be
subscripted or indexed.

4-75 _ October 1985

THE DATA DIVISION
PAGE LIMIT

4.9.29 PAGE LIMIT

Function
The PAGE LIMIT clause indicates the specific 1line control to
maintained within the presentation of a report page.

General Format

LIMIT IS LINE

pace { Tutrs ane | inteser-1 {{ TN

[HEADINQ 1nteger-2] [FIRST DETAIL integer-3]
[LAST DETAIL integer-4] [FOOTING 1nteger-5]
MR-S8-1028-81

Technical Notes

1. The PAGE LIMIT clause is required when page format must
controlled by the Report Writer,

2. All integers must have a positive value 1less than
Integer-2 through integer-5 must not be greater
integer-1.

be

be

512.
than

3. 1If absolute line spacing is indicated for all report groups
(see the LINE NUMBER and NEXT GROUP clauses, Sections 4.9.32

and 4.9.33 respectively), integer-2 through integer-5
not be specified.

need

4. The integers specify line numbers relative to the beginning

of a page.

5. The HEADING clause specifies the first line of a page to
used; no line precedes integer-2.

be

6. The FIRST DETAIL clause speciflies the first line of the first
DETAIL or CONTROL print group; no DETAIL or CONTROL group

precedes integer-3.

7. The LAST DETAIL clause specifies the last line of a DETAIL or
CONTROL HEADING report group; no such group extends beyond

integer-4.

8. The FOOTING clause specifies the last line number of the last
CONTROL FOOTING report group; no CONTROL FOOTING group

extends beyond integer-S.

9. If any optional clause is omitted, a value is assumed for its

integer. The default values are:
integer-2: Default 15 1

integer-3: Default is the value of integer-2

4-76 October 1985

THE DATA DIVISION

PAGE LIMIT (Cont.)

integer-4: Default 1is the value of integer-5 if
specified; 1if integer-5 is also omitted, the
default is the value of integer-1

integer-5: Default 1is the value of integer-4 if
specified; ' if integer-4 1is omitted, the
default is the value of integer-1.

4-77 October 1985

THE DATA DIVISION

REPORT GROUP DESCRIPTIONS

4.9.39 Report Group Description

Function

The Report Group Description entry specifies the

format of a particular report group.

General Format

Format 1:

01 rdata—name-l]

[integer-1
LINE NUMBER IS { PLUS integer-2
NEXT PAGE

-

integer-3
NEXT GROUP IS {PLUS integer-4
NEXT PAGE

REPORT HEADING
RH
PAGE_HEADING

O

%ESNTROL HEADING}

ju=}

ETAIL

{

PAGE FOQTING

=
o0

I[I8

PE

REPORT_FOOTING

RE

\
DISPLAY
DISPLAY-6

[usace 15] { pRELAY=E) |

DISPLAY-9

NTROL FOOTING} ‘

identifier-l}
FINAL

identifier-Z}
FINAL

MR-S-1029-81

characteristics and

October 1985

THE DATA DIVISION

REPORT GROUP DESCRIPTIONS (Cont.)

Format 2
level-number [data-name-l]
LBLANK WHEN ZERO]

COLUMN NUMBER IS integer-l]

GROUP INDICATE]

JUSTIFIED
[{JUST | RIG“T]

integer-2
INE NUMBER IS ¢ PLUS integer-3
NEXT PAGE

[{PICTURE

PIC % IS character-string]

[RESET ON {;?ﬁg{*fier'l]

SOURCE IS identifier-2
SUM identifier-3 [,identifier-4] ... [UPON data-name-Z]
VALUE IS Tliteral-1

DISPLAY

] DISPLAY-6
DISPLAY-7 -
DISPLAY-9

MR-S-1030-81

[USAGE IS

October 1985

THE DATA DIVISION

REPORT GROUP DESCRIPTIONS (Cont.)

Technical Notes

1.

Except for the data-name, which when present must immediately
follow the 1level-number, the clauses can be written in any
order.

A report group must have a data-name if it is referred to by
a Procedure Division statement.

Up to three hierarchical levels are permitted in a report
group description.

All elementary items must have both a PICTURE clause and one
of the clauses SOURCE, SUM, or VALUE.

For a detailed description of the BLANK WHEN ZERO, JUSTIFIED,
PICTURE, VALUE, and USAGE clauses, see the pages following
the Data Description Entry, which is Section 4.9.12.

The data-name need not appear in an entry unless it |is
referred to by a GENERATE or USE statement, or reference is
made to the SUM counter.

If the level-@1 item is elementary, the clauses in Format 2
can be used in addition to the clauses in Format 1.

The remaining clauses are described in detail on the
following pages.

4-80 October 1985

THE DATA DIVISION

COLUMN NUMBER

4.9.31 COLUMN NUMBER

Function

The COLUMN NUMBER clause indicates the column on the printed page in
which the high-order (leftmost) character of an item is printed.

General Format

ECOLUMN NUMBER IS integer-]]

MR-5-1299-81

Technical Notes

1.
2.

3.

Integer must have a positive value less than 512.
This clause is valid only for an elementary item.

Within a report group and a particular LINE NUMBER
specification, COLUMN NUMBER entries must be indicated from
left to right.

If the COLUMN NUMBER clause is omitted, the elementary item,
though included in the description, is suppressed when the
report group is produced at object time.

An entry that contains a COLUMN NUMBER clause but no LINE
NUMBER clause must be subordinate to an entry that contains a
LINE NUMBER clause.

4-81 October 1985

THE DATA DIVISION

GROUP INDICATE

4.9.32 GROUP INDICATE

Function

The GROUP INDICATE clause indicates that this elementary item is to be

produced

only on the first occurrence of the item after any CONTROL or

PAGE breaks.

General Format

[GRouP INDICATE |

MR-S-1300-81

Technical Notes

1.

2'

This clause can only be used at the elementary level within a
TYPE DETAIL report group.

A GROUP INDICATEd item is presented in the first detail 1line
of a report after any control breaks and after any page
breaks; it is suppressed at all other times.

The GROUP INDICATE clause can only appear in a DETAIL report

entry defining a printable item. (A printable item is a data
item that contains a COLUMN and PICTURE clause.)

4-82 October 1985

THE DATA DIVISION

LINE NUMBER

4.9.33 LINE NUMBER

Function

The LINE
entry in

NUMBER clause indicates the absolute or relative line number
reference to the page or the previous entry.

General Format

integer-1
LINE NUMBER IS PLUS integer-2

NEXT PAGE

MR-S-1301-81

Technical Notes

1.

Integer-1 and integer-2 must be positive integers with values
less than 512. Integer-1 must be within the range specified
by the PAGE LIMITS clause in the RD entry.

The LINE NUMBER clause must be given for each report line of
a report group, and must be specified at or before the first
elementary item that contains a COLUMN clause of each report
line. If an 1item does not contain a COLUMN clause and the
LINE NUMBER clause is specified for it, no printing is done,
but the LINE NUMBER clause does cause vertical spacing to be
done.

If a LINE NUMBER clause is specified for an item, all entries
following that item, wup to but not including the next item
with a LINE NUMBER clause, are presented on the same line.

A LINE NUMBER at a subordinate level c¢an not contradict a
LINE NUMBER at a group level.

Integer-1 indicates that the current line is to be presented
at that line number.

PLUS integer—2 indicates that the LINE-COUNTER is to be
incremented by the value of integer—2, and that the current
line is to be presented on the 1line specified by the new
value of the LINE-COUNTER. The LINE NUMBER clause is the
only way for you to change the current value of LINE-COUNTER.

A relative LINE NUMBER clause cannot be the first LINE NUMBER
clause in a PAGE FOOTING group.

4-83 : October 1985

THE DATA DIVISION

LINE NUMBER (Cont.)

8.

NEXT PAGE is used to indicate an automatic skip to the next
page before the current line is presented. If there is no
PAGE-LIMIT clause, there is only a skip to the top of the
next page. However, if there is a PAGE-LIMIT clause, after
skipping to the next page, the Report Writer then spaces as
follows.

Type of Line Space To

Detail, control heading, First detail line
control footing

Report heading, report Heading line
footing, page heading

Page footing Footing line

4-84 October 1985

THE DATA DIVISION

NEXT GROUP

4,9.34 NEXT GROUP

Function

The NEXT

GROUP clause specifies the spacing condition following the

last line of the report group.

General Format

integer-1

NEXT GROUP IS ‘ PLUS integer-2

NEXT PAGE

MR-S-1302-81

Technical Notes

1.

The NEXT GROUP clause can appear only at the @l-level of a
report group. However, the NEXT GROUP clause cannot be
specified in a REPORT FOOTING report group.

Integer-~l and integer-2 must be positive integers with values
less than 512. Integer-l1 cannot exceed the number of lines
specified by the PAGE LIMIT clause.

Integer—-1 indicates a line number to which the LINE-COUNTER
is set after the group is presented.

PLUS 1integer-2 indicates a relative 1line number that
increments the LINE-COUNTER by the value of integer-2 after
the group is presented. Integer-2 is the number of lines
skipped following the last line of the report group.

NEXT PAGE indicates an automatic skip to the next page after
the group is presented.

The NEXT PAGE clause cannot be specified in a PAGE FOOTING
report group.

4-85 October 1985

RESET

THE DATA DIVISION

4.9.35 RESET

Function

The RESET clause indicates the CONTROL data-item that causes the SUM
counter to be reset to zero on a control break.

General Format

RESET ON {

identifier-l}
FINAL

MR-S-1033-81

Technical Notes

1.

2.

Identifier must be one of the identifiers associated with the
CONTROL clause in the RD entry.

The RESET clause can be used only in conjunction with a SUM
clause at a CONTROL FOOTING elementary level.

Identifier must be a higher 1level (more major) control
identifier than the control identifier associated with this
report group.

After a TYPE CONTROL FOOTING report group is presented, the
sum counters associated with that group are automatically set
to zero, unless an explicit RESET clause directs that the
counter be cleared at a higher level.

4-86 October 1985

THE DATA DIVISION

SOURCE

4,9.36 SOURCE

Function

The SOURCE clause indicates the source of the data for a report item.

General Format

SOURCE

identifier

MR-S-1303-81

Technical Notes

1.

2.

The SOURCE clause can only be given at the elementary level.

Identifier must reference an item that appears in the File or
Working-Storage Section.

The identifier can be subscripted or indexed (see the OCCURS
clause, Section 4.9.18).

When the report group is presented, the contents of this
report item are replaced by the contents of identifier.

4-87 October 1985

SUM

THE DATA DIVISION

4.9.37 SsuM

Function

The SUM clause indicates the items to be summed to produce the source
of data for a report item.

General Format

SUM identifier-1 [identifier-z] [UPON data-name-l]

MR-8-1304-81

Technical Notes

1.

2'

A SUM clause can appear only in a TYPE CONTROL FOOTING report
group.

Each identifier must indicate a SOURCE item in a TYPE DETAIL
report group, or a SUM counter in a TYPE CONTROL FOOTING
report group.

If the SUM counter is referred to by a Procedure Division or
Report Section statement, a data-name must be specified for
the item. The data-name then represents the summation
counter automatically generated by the Report Writer; that
data-name does not represent the report group item itself.

A summation counter is incremented just before the
presentation of the identifiers. Any editing of the SUM
counters is done only when the sum item is presented; at all
other times it is treated as a numeric item.

If higher-level report groups are indicated in the control
hierarchy, each 1lower level that is figured into the sum is
summed into the higher 1level before each lower 1level is
reset: that 1is, counters are rolled forward prior to the
reset operation.

The UPON option is required to obtain selective summation for
a particular data item that is named as a SOURCE item in two
or more TYPE DETAIL report groups. Identifier-1 and
identifier-2 must be SOURCE data items in data-name-1l;
data-name-1 must be the name of a TYPE DETAIL report group.

When the UPON option is used, summation occurs only when a
GENERATE statement references data-name-1. It does not occur
during summary reporting (refer to the GENERATE statement,
Section 5.9.16.)

The identifiers cannot be subscripted or indexed.

4-88 October 1985

THE DATA DIVISION

4,9.38 TYPE

Function

TYPE

The TYPE clause specifies the particular type of report group that |is
described by this entry and indicates the time when the report group

is generated.

General Format

(REPORT HEADING

PAGE HEADING

pu o

FINAL
Type 15 DETAIL
CONTROL FOOTING identifier-n
PAGE_FOOTING
PE
REPORT FOOTING
\B£

Technical Notes

l. RH is an abbreviation
PH is an abbreviation
CH is an abbreviation
DE is an abbreviation
CF is an abbreviation
PF is an abbreviation
RF is an abbreviation

PH {&ﬁ#IBQL_ﬂﬁADLNQ; {1dentifier-n§

for
for
for
for
for
for
for

/
MR-S-1035-81

REPORT HEADING.
PAGE HEADING.
CONTROL HEADING.
DETAIL.

CONTROL FOOTING.
PAGE FOOTING.
REPORT FOOTING.

2. If the report group is described as TYPE DETAIL, the GENERATE
statement in the Procedure Division directs the Report Writer
to produce the named report group.

3. The REPORT HEADING entry indicates a report group that |is
produced only once at the beginning of a report, during the
execution of the first GENERATE statement. There can be only
one report group of this type in a report.

4., The PAGE HEADING entry

indicates a report group that Iis

automatically produced
report. There can be only one report group of this type in a

report.

at the beginning of each page of the

5. The CONTROL HEADING entry indicates a report group that Iis
produced at the beginning of a control group for a designated
identifier. 1In the case of FINAL, it is produced once bhefore

the first control
GENERATE statement.

group during the execution of the first
There can be only one report group of

this type for each identifier and for FINAL.

4-88.1 October 1985

THE DATA DIVISION

TYPE (Cont.)

6.

The CONTROL FOOTING entry indicates a report group that is
produced at the end of a control group for a designated
identifier, or that is produced only once at the termination
of a report in the case of FINAL. There can be only one
report group of this type for each identifier and for FINAL.
In order to produce _any CONTROL FOOTING report groups, a
control break must occur. In the event that a CONTROL
FOOTING occurs after a control break and is the first line
printed on the next page, change one or more values
(integer-1, integer-4, and 1integer-5) of the PAGE LIMIT
clause,

The PAGE FOOTING entry indicates a report group that 1is
automatically produced at the bottom of each page of the
report. There can be only one report group of this type in a
report.

The REPORT FOOTING entry indicates a report group that is
produced only once, at the termination of a report. There
can be only one report group of this type in a report.

Each identifier, as well as FINAL, must be one of the

identifiers associated with the CONTROL clause in the RD
entry.

4-88,2) October 1985

THE DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION
DATA DIVISION.

[}TLE SECTION.
[Eg file-name

: ’ . RECORD(S
[}LOCK CONTAINS [}nteger-l IQ] integer-2 .{ CHARACTE&S {]

[:RECORD CONTAINS [integer-3 T0] integer-4 CHARACTER%]

RECORDS ARE OMITTED

IDENTIFICATION data-name-1

B data name- 2 data-name-3
L?ATE-NRITTEN IS Q]1tera1 -2 j} [§SER NUMBER IS { integer-5, integer-6 {}

ABEL { RECORD IS } {STANDARD}

RECORD 1S
DATA { ECORES ARE} data-name-4 [}ata-name-s:] ...:}

l—

data-name-7
WITH FOOTING AT {integer-B %]

data-name-6
LINAGE IS {integer-? } LINES

-

data-name-8) data-name-9
[}INES AT TOP ;1nteger-9 } [}INES AT BOTTOM {integer—lo %]

[?ODE-SET IS a]phabet-name:]

{%%%%%%SIiRE} report-name-1 [}eport—name-%] ..Z]
S

' BINARY
RECORDING | MODE IS [:;YTE MODg]

E
v
STANDARD-ASCII
STANDARD ASCII

4-89 October 1985

THE DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION

I~
(=
(=]

{$)]
o
(o))

DENSITY IS

g

PARITY IS {

et

o

(=}

(e}
rnlo
<o
mio
=
-

(o)
~NY
(S
(e

[:gg file-name

[:RECORD CONTAINS [integer-1 T0 | integer-2 CHARACTER{]
RECORD IS i
[:BATA {EEEEﬁBS ARE} data-name-1 [Eata-name i] ..CT
[Erecord-description-entry} ...:] ...i}

[ﬁORKING-STORAGE SECTION.
77-1evel-description-entry
record-description-entry

[Linkace sECTION.
77-1evel-description-entry
record-description-entry .

[§0MMUNICATION SECTION.

[communication-description-entry
[record-description-entry | ...:] ...:}

MR-S-1306-81

THE DATA DIVISION

GENERAL FORMAT FOR DATA DIVISION

REPORT SECTION.

RD report-name

[CODE mnemonic-name]

—

: FINAL
| %%%%%%%S IzRE } jdentifier-1 [identifier-21 ...
=2 FINAL identifier-1 [identifier-2)

LIMITS ARE LINES

PAGE { LIMIT IS } integer-1 { LINE l

[HEADING integer-2 | [FIRST DETAIL integer-3 |

[LAST DETAIL integer-4] [FOOTING integer-5]]

{record-descriptian-entry}

4-91

FORMAT 1:

level-number { F

THE DATA DIVISION

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

data-name-1 }
ILLER

[:REDEFINES data-name-2 :]

USAGE IS

:[w]/

ASCENDING
DESCENDING

[:}NDEXED BY index-name-1 [index-name-2 |

COMPUTATIONAL
comMp
COMPUTATIONAL-1

COMP-1
COMPUTATIONAL-3

COMP-3
DISPLAY
DISPLAY-6
DISPLAY-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY

LEADING
TRAILING} I:SEPARATE CHARACTER]:|

} KEY IS data-name-4 [}ata—name-é] ...:]

SYNCHRONIZED
SYNC

EFT
RIGHT

JUSTIFIED
JUST
ANK WHEN ZERo:]

[BLan
[VALUE IS Titeral |

RIGHT
LEFT

{ %%%IQBE } IS character-string:]

——

OCCURS {integer-l JO integer-2 TIMES DEPENDING ON data-name-3
integer-2 TIMES

}

THE DATA DIVISION
GENERALTFORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 2:

66 data-name-1 RENAMES data-name-2 {} %%%%uﬁﬂ } data—name—B:]

FORMAT 3:

S VALUE IS . THROUGH .
88 condition-name {<VKEUES ARE} literal-1 { THRU } literal-2

literal-3 B m—E%U—G—H} 11'tera1-4]

THE DATA DIVISION

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

Format 1

01 [data-name-1]

[integer-1
LINE NUMBER IS PLUS integer-2
NEXT PAGE
L E—
integer-3
NEXT GROUP 1S PLUS integer-4
NEXT PAGE
REPORT HEADING)
RH
PAGE HEADING
PH CONTROL HEADING identifier-1
— CH FINAL
Type 15 q DETALL >

9

FINAL

E { CONTROL FOOTING } { identifier-2 }
CF

PAGE FOOTING

PF
REPORT FOOTING
 RF
DISPLAY
[usacE 1s] { orrAv7 -
DISPLAY-D

4-94

THE DATA bIVISION

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

Format 2

level-number [data-name-1]
[BLANK WHEN ZERO]
[COLUMN NUMBER 1S integer-1]

[GROUP INDICATE]

[{ JUSTIFIED : R LGHT]

integer-2
LINE NUMBER IS PLUS integer-3
L NEXT PAGE

{ %%%IEEE } IS character-string]

-

[identifier-1
RESET ON {_FINAL }]

L

SOURCE IS identifier-2
SUM identifier-3 [identifier-4] ... [UPON data-name-2]

VALUE IS Tliteral-1

DISPLAY

[usaee 15] { BREEAYS ¢ | -

DISPLAY-9

4-95

CHAPTER 5

THE PROCEDURE DIVISION

The Procedure Division specifies the processing to be performed on the
files and file data described in the Environment and Data Divisions.
The Procedure Division contains a series of COBOL procedure statements
which describe the processing to be done. Statements, sentences,
paragraphs, and sections are described in Section 5.1. Sections are
optional and permit a group of consecutive paragraphs to be referenced
by a single procedure-name; sections can also be used for
segmentation purposes (see Section 5.3, Segmentation). If any section
appears in the Procedure Division, then all paragraphs must appear
within a section.

The first entry in the Procedure Division of a source program must be
the division-header. The next entry must be either the DECLARATIVES
header (see the USE statement, Section 5.9.42), or a paragraph-name or
section-name.

PROCEDURE DIVISION [ESING data-name-1 [Eata-name-%:] ...:]
[:PECLARATIVES.

{ section-name SECTION [}egment-numbei] . declarative-sentence

[}aragraph—name. [}entencé] ...:] e }

END DECLARATIVES.
{ section-name SECTION [gggment-number:]

[}aragraph-name. [}entence:] ...:] . }

Only in a subprogram can USING clauses appear 1in the PROCEDURE
DIVISION header.

When a program-name is specified in a CALL statement in a calling
program, control is transferred to the beginning of the executable
code in the subprogram (that is, the Procedure Division).

The identifiers in the USING clause indicate those data items in the
called program that may reference data items in the calling program.
The order of identifiers in the CALL statement of the calling program
and in the PROCEDURE DIVISION header of the called program 1is
critical. The items 1in the USING clauses are related by their
corresponding positions, not by name. Corresponding identifiers refer
to a single set of data that is available to both the calling and the
called programs.

THE PROCEDURE DIVISION

The number of identifiers in the USING c¢lause in the PROCEDURE
DIVISION header must be 1less than or equal to the number of
identifiers in the USING clause in the CALL statement in the calling
program.

5.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The Procedure Division consists of a series of procedure statements
grouped into sentences, paragraphs, and sections. By grouping the
statements in this manner, reference can be made to them via a
procedure-name (that 1is, a paragraph-name or a section-name). The
order in which procedure statements are executed can be controlled by
using the sequence=-control verbs ALTER, GO TO, and PERFORM.

5.1.1 Statements

Statements fall into three categories: imperative, conditional, and
compiler-directing, depending upon the verb used. Verbs, in turn, are
also classified into certain categories. These categories and their
relationship to the three statement categories are given in Table 5-1.

THE PROCEDURE DIVISION

Table 5-1

Procedure Verb and Statement Categories

Verb

Verb Category

Statement Category

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT
INSPECT

ARITHMETIC

IMPERATIVE

ALTER

CALL

ENTER

ENTRY

EXIT PROGRAM
GOBACK

GO TO
PERFORM

STOP

SEQUENCE~CONTROL

IMPERATIVE

ACCEPT
INSPECT
MOVE

SET
STRING
UNSTRING

DATA MOVEMENT

IMPERATIVE

CANCEL
FREE
INSPECT
MERGE
RELEASE
RETAIN
RETURN
SEARCH
SORT
TRACE

MISCELLANEOUS

IMPERATIVE

GENERATE
INITIATE
TERMINATE

REPORT

IMPERATIVE

ACCEPT
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
WRITE

IMPERATIVE

IF

CONDITIONAL

CONDITIONAL

COPY
ENTER
USE

COMPILER~-DIRECTING

COMPILER-DIRECTING

THE PROCEDURE DIVISION

5.1.2 Sentences

A statement or sequence of statements terminated by a period fogms a
sentence. Sentences are classified into the same three categories as

statements.

An imperative sentence consists solely of one or more imperative
statements. Except for imperative sentences containing one of the
sequence-control verbs, control passes to the next procedural sentence
following execution of the imperative sentence. If a GO TO or STOP
RUN statement is present in an imperative sentence, it must be the
last statement in the sentence.

A conditional sentence performs some test and, on the basis of the
results of that test, determines whether a "true" or a "false" path
should be taken. A conditional sentence 1is one that contains the
conditional verb (IF) or one of the option clauses ON SIZE ERROR (used
with arithmetic verbs), AT END (used with the READ verb), or INVALID
KEY (used with the READ verb for mass storage devices).

A compiler-directing sentence consists of a single compiler-directing
statement. Compiler-directing sentences are used to indicate the end
point of a PERFORM loop (EXIT), to copy library entries (COPY), and to
specify procedures for input-output errors (USE). Generally,
compiler-directing sentences generate no object-program coding.

5.1.3 Paragraphs

A single sentence or a group of sequential sentences can be assigned a
paragraph-name for reference. The paragraph-name must begin in Area A
(see Section 1.3, Source Program Format) and terminate with a period.
The first sentence of the paragraph can begin after the space
following this period or it can begin on the next line, beginning in
Area B.

A paragraph-name must be unique within its section, but need not be
unique within the program. A non-unique paragraph-name must be
qualified by its section-name except when it is referenced from within
its own section.

5.1.4 Sections

A single paragraph or a group of sequential paragraphs can be assigned
a section-name for reference. The section-name must begin in Area A
and be followed by the word SECTION followed by a priority number, if
desired, followed by a terminating period.

section~name SECTION nn.

If the section-name is in the Declaratives portion, it may not have a
priority number. A USE statement may appear following the terminating
space after the period.

The section-name applies to all paragraphs following it until another
section-header is encountered.

All section-names must be wunique within a program. Sections are
optional within the Procedure Division, but if a Declaratives portion
is used there must be a named section immediately following the END
DECLARATIVES statement.

THE PROCEDURE DIVISION

When a section-name is referenced, the word SECTION is not allowed in
the reference.

5.2 SEQUENCE OF EXECUTION

In the absence of sequence-control verbs, sentences are executed
consecutively within paragraphs, paragraphs are executed consecutively
within sections, and sections are executed consecutively within the
Procedure Division (with the exception of sections within the
Declaratives portion, which are executed individually when the related
condition occurs).

5.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS

COBOL source programs can be written to enable certain portions of the
Procedure Division code to share the same memory area at object run
time, thus decreasing the amount of memory required to run the object
program. The method used to achieve this reduction is called
segmentation.

Segmentation consists of dividing the Procedure Division sections into
logically related groupings called segments. You can define a segment
by assigning the same priority-number (a priority-number £follows the
word SECTION in the section-header, and can be in the range 00 through
99) to all the sections you wish included 1in that segment; these
sections need not appear consecutively in the source program.

Segments are classified into three groups, depending upon their
priority-number. These three groups are described in Table 5-2.

Table 5-2
Types of Segments

Priority Number Type Description

None, or 00 up to Resident This segment is always resi-

SEGMENT-LIMIT Segment dent in memory and is never

minus 1 overlaid.

SEGMENT-LIMIT Nonresident; These segments are non-

up to 49 ALTERed GO resident and are brought
TOs retained into memory when needed.

Any ALTERed GO TOs retain
their most recently set

values.
50 through 99 Nonresident; These segments are also naon-
ALTERed GO resident and are brought
TOs reset into memory when needed.

Any ALTERed GO TOs do not
retain their latest values,
but are reset to their
original setting each time
the segment is reloaded into
memory.

THE PROCEDURE DIVISION

In addition to the resident segment, all data areas described in the
Data Division are resident at all times. Thus, memory can be thought
of as being divided into two parts:

1. A resident area, in which reside all data areas and the
resident segment, and

2. A nonresident area, equal to the size of the largest
nonresident segment, into which each nonresident segment is
read when needed. Since each nonresident segment reads into
the same memory area, any previous nonresident segment in
that area is overlaid and must be brought in again when it is
to be executed again.

The resident segment should consist of those sections that constitute
the main portion of the processing. Infrequently used sections can be
allocated to the nonresident segments.

5.4 ARITHMETIC EXPRESSIONS

An arithmetic expression is an identifier of a numeric elementary
item, or a numeric literal, or such identifiers and literals separated
by arithmetic operators.

Algebraic negation can be indicated by a unary minus symbol.

5.4.1 Arithmetic Operators

There are five arithmetic operators that may be used in arithmetic
expressions. They are represented by specific character symbols that
must be preceded by a space and followed by a space.

Arithmetic Operator Meaning

Addition or unary plus
Subtraction or unary minus
Multiplication
Division

* Exponentiation
Exponentiation

> RN * |+

5.4.2 Formation and Evaluation Rules

The following rules for information and evaluation apply to arithmetic
expressions.

1. Parentheses specify the order in which elements within an
arithmetic expression are to be evaluated. Expressions
within parentheses are evaluated first. Within a nest of
parentheses, the evaluation proceeds from the elements within
the innermost pair of parentheses to the outermost pair of
parentheses. When parentheses are not used, or parenthesized
expressions are at the same 1level of inclusiveness, the
following hierarchal order of operations is implied:

THE PROCEDURE DIVISION

First: unary +, unary =

then ** and ° (exponentiation)

then * and / (multiplication and division)
and then + and - (addition and subtraction)

2. When the order of a sequence of operations on the same
hierarchal 1level (for example, a sequence of + and -
operations) 1is not completely specified by use of
parentheses, the order of operations is from left to right.

3. An arithmetic expression may begin with one of the following:
(- + variable
and may end only with one of the following:
) variable
4. There must be a one-~to-one correspondence between 1left and

right parentheses in an arithmetic expression; each left
parenthesis must precede its corresponding right parenthesis.

5.5 CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to select between
alternate paths (called the true path and the false path) of control
depending upon the truth value of a test. Conditional expressions can
be used in conditional (IF) statements and in PERFORM statements
(formats 3 and 4). A conditional expression can be one of the
following types:

Relation condition (greater than, equal to, less than)
Class condition (numeric or alphabetic)
Condition-name condition (level-88 condition-names)

Sign condition (positive, negative, zero)

Each of these types is discussed below.

5.5.1 Relation Condition

A relation condition causes a comparison of two operands, each of
which may be an identifier, a literal, a figurative constant, or an
arithmetic expression. Comparison of two numeric operands is
permitted regardless of their formats as described by their respective
USAGE clauses. Comparison of two operands is permitted if each is
DISPLAY-6, DISPLAY-7, or DISPLAY-9,.

A numeric-edited operand may not be compared to a numeric operand. An
alphanumeric operand may not be compared to a numeric operand unless
the alphanumeric operand contains no characters other than numeric
digits. For example, the statement:

IF NUM < "2",
is permissible but the statement:

IF NUM < "2,0".

is not.

THE PROCEDURE DIVISION

5.5.1.1 Format of a Relation-Condition - The general format for a
relation condition is

identifier-1 identifier-2

Titeral-1 . } literal-2
arithmetic-expression-1 relational-operator arithmetic-expression-2
figurative-constant-1 figurative-constant-2

The first operand is called the subject of the condition;. the _second
operand 1is called the object of the condition. Either the subject or
the object must be an identifier or an arithmetic expression.

5.5.1.2 Relational Operators - Relational operators specify the type
of comparison to be made in the relation condition. Relational
operators must be preceded by a space and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than, not greater than
IS [NOT] > THAN

IS [NOT] LESS THAN Less than, not less than
IS [NOT] < THAN

IS [NOT] EQUAL (EQUALS) TO Equal to, not equal to
IS [NOT] = TO

5.5.1.3 Comparison of Numeric Items - A comparison between two
numeric items determines that the algebraic value of one item is less
than, equal to, or greater than the algebraic value of the other item.
The length of the operands is not significant. Zero is considered a
unique value; +0 and -0 are equal. Unsigned operands are considered
positive. Blanks and tabs are ignored when a numeric item is compared
to zero. Since blanks and tabs make an item nonnumeric, a true zero
condition may be established by a nonnumeric test followed by a
comparison with zero.

5.5.1.4 Comparison of Nonnumeric Items - For operands whose category
is nonnumeric (or where one operand is numeric and the other is
nonnumeric), a comparison results in the determination that one of the
operands 1is less than, equal to, or greater than the other operand
with respect to a specified collating sequence of characters (see
Appendix C). The size of an operand is the total number of characters
in the operand. Blanks and tabs are not 1ignored when a nonnumeric
item 1is compared to ZERO. The presence of either blanks, tabs, or
both in the operand will cause the test result to be NOT EQUAL.

There are three cases to consider: operands of equal size, operands
of unequal size, and operands with differing justification.

THE PROCEDURE DIVISION

1. Operands of equal size - If the operands are of equal size,
characters 1in corresponding character positions of the two
operands are compared, starting at the higher-order
(leftmost) end and continuing through the low-order end. If
all pairs of characters compare equally through the last
pair, the operands are considered to be equal. If they do
not all compare equally, the first pair of unequal characters
encountered is compared to determine their relative position
in the collating sequence. The operand containing the
character that is positioned higher in the collating sequence
is considered to be the greater operand.

2. Operands of unequal size - If the operands are of unequal
size, the comparison of characters proceeds from the
high~order end to the low-order end until either

a. A pair of unequal characters is encountered, or
b. One of the operands has no more characters to compare.

If a pair of wunequal characters is encountered, the
comparison is determined in the manner described for
equal-sized operands.

If the end of one of the operands 1is encountered before
unequal characters are encountered, this shorter operand is
considered to be less than the longer operand unless the
remaining characters in the longer operand are spaces, in
which case the two operands are considered equal.

3. If one operand 1is right-justified and the other is
left-justified, they are compared just as they appear in the
record. That is, PICTURE XXX, VALUE "B" and PICTURE XXX,
VALUE "B", JUSTIFIED RIGHT are not equal because the first
appears in the record as B and the second as B.

5.5.2 Class Condition

The class condition tests the contents of an item for being wholly
alphabetic or wholly numeric.

5.5.2.1 Format of a Class Condition

identifier 1S [NOT] { ————ﬁb&?é?ﬁ”c }

5.5.2.2 Restrictions - The item named by identifier must be
described, implicitly or explicitly, as DISPLAY, DISPLAY-6, DISPLAY-7,
or DISPLAY-9. The NUMERIC test cannot be applied to an item described
as alphabetic. The ALPHABETIC test cannot be applied to an item
described as numeric. A compiler diagnostic will result if either of
the two previously mentioned tests are attempted.

THE PROCEDURE DIVISION

5.5.2.3 The ALPHABETIC Test - The ALPHABETIC test result is true when
the item consists of characters from the alphabet (A through 2Z) and
the space or tab.’

5.5.2.4 The NUMERIC Test - The NUMERIC test result is true under the
following conditions:

1. For nonnumeric and unsigned numeric items, each <character
must be a digit (0 through 9). No signs are permitted.
Spaces and tabs cause the test result to be false.

2. For signed numeric items, the sign must have one of the four
following representations: a leading graphic sign ("+" or
"-"), a trailing graphic sign, a leading embedded sign, or a
trailing embedded sign. All other characters must be digits.
Spaces or tabs cause the test result to be false.

NOTE

An alternative form of NUMERIC test,
which causes leading and trailing blanks
and tabs to be ignored, may be selected
by a switch setting during system
installation. This alternative form is
described in Appendix D.

5.5.3 Condition-Name Condition

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name (level-88).

5.5.3.1 Format of a Condition-Name Condition - The general format for
a condition-name is

[ﬁof] condition-name

If the condition-name is associated with a range of values, then the
conditional variable is tested to determine whether or not its value
falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

The result of the test is true if one of the values associated with
the condition-name equals the value of its associated conditional
variable.

THE PROCEDURE DIVISION

5.5.4 Sign Condition

The sign condition determines whether or not the algebraic value of a
numeric operand is less than, greater than, or equal to zero.

5.5.5.1 Format of a Sign Condition - The general format for a sign
condition follows.

. P o POSITIVE
identifier
| arithmetic-expression] IS [Not] NEGATIVE

The POSITIVE test result is true if the identifier or
arithmetic-expression is algebraically greater than zero. The
NEGATIVE test result is true if the identifier or
arithmetic-expression is algebraically less than zero. The ZERO test
result is true if the identifier or arithmetic-expression is equal to
zero or contains all spaces, all tabs, or a combination of spaces and
tabs. However, any spaces or tabs will make an item nonnumeric.

5.5.5 Logical Operators

The interpretation of any of the above conditions is reversed by
preceding the condition with the logical operator NOT. Any of the
above types of conditions can be combined by either of two 1logical
operators. A logical operator must be preceded by a space and
followed by a space.

Logical Operator Meaning
OR Entire condition is true if either
or both of the simple conditions
are true.
AND Entire condition is true if both of

the simple conditions are true.

NOT Entire condition is true if the
simple condition is false.

5.5.6 Formation and Evaluation Rules

A conditional expression can be composed of either a simple-condition
or a compound-condition. A simple-condition is one that performs a
single test. A compound-condition is one that contains a string of
simple-conditions connected by the logical operators AND and/or OR. A
compound-condition can contain any combination of types of conditional
expressions (relational, class, condition-name, and sign).

5-11

THE PROCEDURE DIVISION

The evaluation rules for conditions are analogous to those given for
arithmetic expressions, except that the following hierarchy applies:

arithmetic-expressions
all relational operators
NOT

AND

OR

Parentheses may be used either to improve readability or to override
the effects of the hierarchy given above. Each set of conditions
within a pair of parentheses is reduced to a single condition. When
this is accomplished, reductions which cross parentheses are done.

You may use parentheses in arithmetic expressions to specify the order
in which elements are to be evaluated. Expressions within parentheses
are evaluated first; within nested parentheses, evaluation proceeds
from the least inclusive set to the most inclusive set. In the
absence of parentheses or when parenthesized expressions are at the
same level of inclusiveness, the following hierarchical order of
execution is implied:

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division
4th - Addition and subtraction

NOTE
The precedence of unary minus over
exponentiation is different from
algebraic notation, and from some other
programming languages. If the

data-names A and B have the values 3 and
2 respectively, then the COBOL statement

COMPUTE C= - A ** B

yields C as 9 (not -9 as in algebra).

Examples
1. Using parentheses for ease of reading
The following expression

A =BORC>DANDF < G AND H IS ALPHABETIC OR I 1IS
NEGATIVE

can be parenthesized for readability without changing its
effect as shown below.

(A = B) OR (C > D AND F < G AND H IS ALPHABETIC) OR (I
IS NEGATIVE)

If all the conditions within any of the three sets of
parentheses are true, then the entire conditional expression
is true.

Figure 5-1 illustrates the effect of this statement and the
order of evaluation.

THE PROCEDURE DIVISION

True
True

—g'h
o
ALPHABETIC

False

True

|
NEGATIVE

MR-5-026-79

Figure 5-1 Order of Evaluation of a Conditional Expression
2. Using parentheses to override normal order of evaluation

To illustrate this usage, a compound-conditional is shown in
three forms in Figure 5-2, each accompanied by a flow diagram

showing the result of each.

5-13

THE PROCEDURE DIVISION

F1 = F2 AND F3 = F4 OR F5 = F6 AND F7 = F8

False
Path

F1 =F2 AND (F3 = F4 OR F5 = F6 AND F7 = F8)

False
Path

False

-l-

F1=F2 AND ({F3 = F4 OR F5 = F6) AND F7 = F8)

False
Path

®

MR-§-026-79

Figure 5-2 Order of Evaluation of a Compound-conditional Expression

THE PROCEDURE DIVISION

5.5.7 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of
the logical operators 'AND' or 'OR'. The general format of a combined
condition follows:

condition { {%g—g } condition }

"Condition" may be one of the following:
1. A simple condition
2. A negated simple condition
3. A combined condition

4. A negated combined condition: that 1is, the 'NOT' logical
operator followed by a combined condition enclosed within
parentheses.

5. Combinations of the above, specified according to the rules
summarized in Table 5-3 Combinations of Conditions, Logical
Operators, and Parentheses.

Although parentheses need never be used when either 'AND' or 'OR' (but
not both) is used exclusively in a combined condition, parentheses may
be used to effect a final truth value when a mixture of 'AND', 'OR'
and 'NOT' is used. (See Table 5-3 Combinations of Conditions, Logical
Operators, and Parentheses.)

Table 5-3 indicates the ways in which conditions and logical operators
may be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses so that each left
parenthesis occurs to the left of its corresponding right parenthesis.

Table 5-3
Conditions, Logical Operators, and Parentheses Combinations
In a left-to-right sequence of elements:
Location in Element, when not Element, when not
Given thej|conditional first, may be last, may be
following | |expression immediately pre- immediately fol-
element First Last ceded by only: lowed by only:
simple- Yes Yes OR, NOT, AND, (OR, AND,)
condition
OR or AND No No simple-condition,)| simple-condition,
NOT, (
NOT Yes No OR, AND, (simple-condition, (
(Yes No OR, NOT, AND, (simple-condition,
NOT, (
) No Yes simple-condition,)| OR, AND,)

5-15

THE PROCEDURE DIVISION

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR'
is not permissible; 'NOT' 1is permissible while 'NOT NOT' is not
permissible.

Ll

5.5.8 Abbreviated Combined Relation Conditions

Simple or negated simple relation conditions can be combined with
logical connectives 1in a consecutive sequence. When a succeeding
relation condition contains a subject or subject and. relational
operator that is common with the preceding relation condition, and no
parentheses are used within such a consecutive sequence, then any
relation condition except the first may be abbreviated by one of the
following:

1. The omission of the subject of the relation condition

2. The omission of the subject and relational operator of the
relation condition

The format for an abbreviated combined relation condition follows:

relation-condition {{SED} [ﬁgi] [}e]ationa]-operatoi] object } ce

Within a sequence of relation conditions both of the above forms of
abbreviation may be used. The effect of using such abbreviations is
as if the last preceding stated subject were inserted in place of the
omitted subject, and the last stated relational operator were inserted
in place of the omitted relational operator. The result of such
implied insertion must comply with the rules of Table 5-3,
Combinations of Conditions, Logical Operators, and Parentheses. This
insertion of an omitted subject and/or relational operator terminates
once a complete simple condition 1is encountered within a complex
condition.

The interpretation applied to the use of the word 'NOT' in an
abbreviated combined relation condition is as follows:

1. If the word immediately following 'NOT' is 'GREATER', '>',
'LESS', '<', 'EQUAL', or '=', then the 'NOT' participates as
part of the relational operator; otherwise

2. The 'NOT' 1is interpreted as a logical operator and,
therefore, the implied insertion of subject or relational
operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated Combined

Relation Condition Expanded Equivalent
a > b AND NOT < c OR 4 {((a > b) AND (a NOT < c)) OR (a
NOT < 4d)
a NOT EQUAL b OR ¢ (a NOT EQUAL b) OR (a NOT EQUAL
c)
NOT a = b OR ¢ (NOT (a = b)) OR (a = ¢)

THE PROCEDURE DIVISION

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND ¢ AND NOT 4d) NOT ((((a NOT > b) AND (a NOT >
c)) AND (NOT (a NOT > d))))

5.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS

Associated with the five arithmetic verbs (ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT) are two options: the ROUNDED option and the
SIZE ERROR option. These two options are described here to avoid the
necessity of including their descriptions with each of the arithmetic

verbs.

5.6.1 The ROUNDED Option

If the ROUNDED option is specified, the absolute value of the item is
increased by 1 if the 1leftmost truncated digit is greater than or
equal to 5.

Example:
value: 567~.8756
resultant-identifier picture: 999Vv99
stored result without
ROUNDED option: 567~87
stored result with '
ROUNDED option: 567488

When the low-order positions in a resultant-identifier are represented
by - the symbol P in the PICTURE associated with the
resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

Example: value: 5388
resultant-identifier picture: 99PP
stored result without
ROUNDED option: 53
stored result with
ROUNDED option: 54

5.6.2 The SIZE ERROR Option

If, after decimal point alignment, the number of signiticant digits in
the result of an arithmetic operation is greater than the number of
integer positions provided in the result-identifier, a size error
condition occurs. Division by zero always causes a size error
condition. The size error condition applies to both the intermediate
results and the final result of an arithmetic operation. If the
ROUNDED option is specified, rounding takes place before checking for
size error. When such a size error does occur, the subsequent action
depends upon whether or not the SIZE ERROR option is specified.

If the SIZE ERROR is not specified and a size error condition occurs,
the value of the resultant-identifier 1is unpredictable, and no
additional action is taken.

If SIZE ERROR is specified, and a size error condition occurs, then
the values of the resultant-identifier (s) affected by the size errors

5-17

THE PROCEDURE DIVISION

are not altered. Values for resultant-identifier (s) for which no size
error condition occurs are unaffected by size errors that occur for
other resultant-identifier(s). After completion of the execution of
the arithmetic operation, the statement(s) after SIZE ERROR is
executed.

Example ADD A TO B ON SIZE ERROR GO TO OVERFLW

A: 954
B: PICTURE IS 999; VALUE 954.
Result: The contents of B are left unchanged and

control 1is transferred to the paragraph
or section named OVERFLW

5.7 THE CORRESPONDING OPTION

The CORRESPONDING option is used in the formats of two of the
arithmetic verbs (ADD and SUBTRACT) and in the format of the MOVE
verb.

For the purpose of this discussion, d(1) and d(2) represent
identifiers that refer to group items. A pair of data items, one from
d(l) and one from d(2), correspond if the following conditions exist:

1. A data item in d(l1) and a data item in d(2) have the same
data-name and the same qualification up to, but not
including, d(l1) and d(2).

2. Both of the data items are elementary numeric data items in
the case of an ADD or SUBTRACT statement with the
CORRESPONDING option.

3. Neither d(1) nor d(2) may be data items with level-number 66,
77, or 88.

4. Each data item subordinate to d(l) or d(2) that contains a
RENAMES, a REDEFINES or an OCCURS clause is ignored.
However, d(1l) and d(2) may have REDEFINES or OCCURS clauses
or be subordinate to data items with REDEFINES or OCCURS
clauses.

See the sections ADD, MOVE, and SUBTRACT for information on the
specific formats and results of the use of the CORRESPONDING option.

5.8 DETERMINATION OF USAGE IN ARITHMETIC COMPUTATIONS

If a programmer describes a numeric field as having USAGE DISPLAY-6,
DISPLAY-7, DISPLAY-9, or COMP-3, the compiler converts this data to
fixed-point binary when performing arithmetic computations with it.
If the field contains 10 or fewer digits, it 1is converted to
single-precision fixed-point binary. Conversion to double-precision
fixed-point binary 1is performed if the field contains more than 10
digits., A field described as COMPUTATIONAL (or INDEX) is fixed-point
binary, and single-precision for 10 or fewer digits, double-precision
for more than 10 digits. A field described as COMPUTATIONAL-1l is
single precision floating-point binary.

When any arithmetic computation is performed, the arithmetic wusage
(single-precision fixed-point, double-precision fixed-point, or
floating-point) used for each operation is determined from the usages
of the two operands of the computation. If either operand is

5-18

THE PROCEDURE DIVISION

floating-point, the operation is performed in floating-point
arithmetic. If neither operand is floating-point, but one operand is
double-precision fixed-point, the operation is performed in
double-precision fixed-point arithmetic. Otherwise, the operation is
performed in single-precision fixed-point arithmetic. If both
operands are constants, the operation 1is performed in single~- or
double-precision fixed-point arithmetic, as appropriate.

If any nonnumeric characters appear in the DISPLAY-6, DISPLAY-7, or
DISPLAY-9 field that is to be converted, the compiler attempts to
convert them to binary; however, in many cases, undefined results can
occur. When DISPLAY-6, DISPLAY-7, and DISPLAY-9 characters are
converted to binary, the following rules apply.

0 through 9 need no conversion.

A through I are converted to 1 through 9.

2001 are converted to 0.

J through R are converted to 1 through 9, and the field

is made negative if they are found in the
high-order or 1low-order digit, unless an
explicit sign is present.

P are converted to 0, and the field is made
negative if it is found in the high-order or
low-order digit unless an explicit sign is

present.
Nulls are igqored.
Leading spaces
and tabs are ignored.
+ and - are treated as sign characters.

Scanning of a field proceeds from left to right, stopping when one of
the following conditions is met:

1. The entire field has been scanned.
2. A trailing space, tab, plus, or minus is seen.

If both leading and trailing signs appear in the field, the trailing
sign will be ignored.

5.9 PROCEDURE DIVISION VERB FORMATS

The format of each Procedure Division verb is given on the following
pages. The verbs are presented in alphabetical order.

The word "identifier" is a data-name followed, as required, by any
qualification, subscripts, and/or indexes necessary to make the
data-name unique.

THE PROCEDURE DIVISION

ACCEPT

5.9.1 ACCEPT

Function

Formats 1 and 2 of the ACCEPT statement cause low-volume data to be
read from the user's terminal.

Format 3 of the ACCEPT statement, the ACCEPT COUNT statement, causes
the MESSAGE COUNT field to be updated to include the number of
messages in a queue or sub-queue maintained by MCS-10. This is wvalid
only for users of TOPS-10.

General Format

Format 1:
ACCEPT identifier-1 identifier-2 ... [EROM mneumonic-name]
Format 2:
DATE
ACCEPT identifier FROM DAY
TIME

Format 3:

ACCEPT cd-name MESSAGE COUNT

Technical Notes

1. The ACCEPT statement causes the next set of data available
from the terminal to replace the contents of the items named
by identifier-1, identifier-2,... .

2. If the FROM option is specified, the mnemonic-name must
appear in the CONSOLE IS clause of the SPECIAL-NAMES
paragraph.

3. When the data to be read for one or more ACCEPT statements is
numeric, a comma (,), space, or tab is used as a delimiter
separating the data items.

4. When the data to be read for one or more ACCEPT statements is
alphanumeric, each data item is delimited by a line-feed,
altmode, form-feed, or vertical tab.

5. The ACCEPT statement will read from left to right into each
identifier a maximum of 1023 characters that have been typed
in. Two characteristics determine how the characters are
read into the identifier. These characteristics are the size
of the data item and the number of characters that are typed
in. If the data item contains fewer than 1023 characters,
two situations can occur:

a. If the user types in fewer characters than are allowed by

the data item, the characters are left justified and the
remaining area is filled with spaces.

5-20 January 1980

THE PROCEDURE DIVISION

ACCEPT (Cont.)

b. If the user types in more characters than are allowed by
the data item, the characters are left justified and
truncated.

Likewise, 1if the data item contains more than 1023
characters, two situations can occur:

a. If the user types in "fewer than 1023 characters, the
characters are 1left justified and the remaining area is
filled with spaces.

b. 1If the user types in more than 1023 characters, only the
first 1023 characters are left justified, and the
remaining area specified by the data item is filled with
spaces.

When the ACCEPT MESSAGE COUNT statement 1is executed, the
contents of the area specified by the communication
description entry must contain the name of the symbolic queue
to be tested. Testing the condition updates the contents of
the data items replaced by data-name-ID (STATUS KEY) and
data-name-2 (MESSAGE COUNT) of the areas associated with the
communication description entry.

5-20.1 January 1980

THE PROCEDURE DIVISION

ADD
5.9.2 ADD
Function
The ADD s

stores th

tatement computes the sum of two or more numeric operands and
e result. ,

General Format

identifier-1 identifier-2 . L.
ADD {h‘terahl |:11'tera1—2] ... TQ identifier-m E?OUNDE[Z]
[identifier-n [ROUNDEE]:' [ON SIZE ERROR 1mperat1‘ve-statement_::|
ADD identifier-1 identifier-2 identifier-3
—) literal-1 literal-2 Titeral-3 e
GIVING identifier-m [ROUNDED_—J Edentifier-n EROUNDED]:I
[pN SIZE ERROR 1mperat1ve-statemenﬁ]
ADD {%EEEMI—N—G-} identifier-1 TO identifier-2 anuNDED:l

[pN SIZE ERROR imperative—statemen{]

Technical Notes

1.

Each ADD statement must contain at least two operands (that
is, an addend and an augend). In formats 1 and 2, each
identifier must refer to an elementary numeric item, except
that identifiers appearing to the right of the word GIVING
may refer to numeric-edited items. In format 3, each
identifier must refer to a group item.

Each literal must be a numeric 1literal; the figurative
constant ZERO is permitted.

The composite of all operands (that is, the data item
resulting from the superimposition of all operands aligned by
decimal point) must not contain more than 19 decimal digits
for the standard compiler and not more than 36 digits for the
BIS-compiler. 1In either case, a maximum of 18 digits can be
stored in the receiving field. (See Section 1.1 for a
definition of the BIS-compiler.)

THE PROCEDURE DIVISION

ADD (Cont.)

3.

_Format 1 causes the values of the operands preceding the word

TO to be algebraically summed. The resultant sum is then
added to the current value of identifier-m and this result
replaces the current wvalue in identifier-m. If other
identifiers follow, the same process is repeated for each of
them.

Format 2 causes the values of the operands preceding the word
GIVING to be algebraically summed. The resultant sum then
replaces the current contents of identifier-m. If other
identifiers follow, their contents are also replaced by this

resultant sum. The current values of identifier-m,
identifier-n,... do not enter into the arithmetic
computation.

Format 3 causes the data items in the group item associated
with identifier-1 to be added to the current value of the
corresponding data items associated with identifier-2, and
each result replaces the value of the corresponding
data-items associated with identifier-2. The «criteria wused
to . determine whether two items are corresponding are
described in Section ‘5.7, Thé CORRESPONDING Option.

The ROUNDED and SIZE ERROR options are described in Section
5.6, -Common Options Associated with Arithmetic Verbs.

THE PROCEDURE DIVISION

ALTER

5.9.3 ALTER

Function

The ALTER statement changes the object of one or more GO TO
statements.

General Format

ALTER procedure-name-1 TO [PROCEED TQ] procedure-name-2

[:procedure-name-3 T0 [}ROCEED TQ] procedure-name—4:]

Technical Notes

1.

During execution of the object program, the ALTER statement
modifies the GO TO statement in the paragraph named
procedure-name-1, procedure-name-3, ... replacing the object
of the GO TO by procedure-name-2, procedure-name-4, ...,
respectively.

Each procedure-name-1, procedure-name-3,.... must be the name
of a paragraph that contains nothing but a single GO TO
statement without the DEPENDING option.

Each procedure-name-2, procedure-name-4,... must be the name
of a paragraph or section within the Procedure Division.

A GO TO statement in a section whose priority is greater than
or equal to 50 must not be referred to by an ALTER statement
in a section with a different priority.

An ALTER statement in a procedure not in the DECLARATIVES
portion of the program may not reference a procedure name
within the DECLARATIVES; conversely, an ALTER statement
within the DECLARATIVES may not reference a procedure-name
not in the DECLARATIVES.

Restrictions similar to those in Note 5 also apply to the
input procedures and to the output procedures associated with
SORT and MERGE verbs.,

For program segments with priorities of 50 and greater, the
changes made by ALTER statements will be lost when segments
are overlaid.

THE PROCEDURE DIVISION

CALL
5.9.4 CALL
Function

The CALL statement is used to transfer control to a subprogram.

General Format

identifier-1 } [}SING data-name-1 [:data-name-Z:] ..:]

CALL { program-name
entry-name ;

[on OVERFLOW imperative-statement]

Technical Notes

1. Program-name is a one to six character name (PROGRAM-ID) of
the subprogram to be called. Entry-name is a one to six
character name of an entry point in the subprogram. Either
name can be enclosed in quotation marks, but can contain only
letters and digits.

2. If the program-name is used, the entry point will be at the
beginning of the executable code in the subprogram.

3. Called programs can call other subprograms, but a called
program cannot call, either directly or indirectly, any part
of itself or the program that called it.

4. The number of operands in the USING clause of the CALL
statement must be greater than or equal to the number of
operands in the ENTRY Statement or PROCEDURE DIVISION header
in the subprogram.

5. Each of the operands in the USING clause may be any item
defined in the File, Working-Storage, or Linkage section of
the calling program. However, these items must be
word-aligned; that is, they must begin on a word boundary.
01- and 77-level items are always word-aligned. Any other
item can be word-aligned by means of the SYNCHRONIZED LEFT
clause.

6. The identifiers in the USING clause indicate those data items
in the calling program that may be referenced (or whose
subordinate parts may be referenced) in the called program.
The order of the identifiers in the CALL statement in the
calling program and in the PROCEDURE DIVISION header or ENTRY
statement of the calling program is critical. The items in
the USING clause are related by their corresponding
positions, not by name. Corresponding identifiers refer to a
single set of data that is available to both the calling and
called programs.

THE PROCEDURE DIVISION

CALL (Cont.)

The first time a called program is entered, its state is that
of a fresh copy. Subsequently, if the subprogram is not in a
LINK overlay, its state when entered is exactly as it was
left after the 1last exit from it. That is, all internal
variables, altered GO TOs, and the like are exactly as they
were left. However, external data (that is, data described
in the Linkage Section) may have been changed since the last
exit. - .

If the subprogram is in a LINK overlay and it is entered
again, 1its state is exactly as it was left after the last
exit from it provided that the subprogram has not been
cancelled or overlaid. If the subprogram has been cancelled
or overlaid, its state is that of a fresh copy.

The CALL identifier clause works only when the following
conditions are met:

a. There is only one subprogram per overlay.
b. Each subprogram has only one entry point.
c¢. The overlay name is the same as the subprogram name.

Refer to the COBOL-74 Usage Material, Part 3 of this manual,
for more information on subprograms.

CANCEL

THE PROCEDURE DIVISION

5.9.5 CANCEL

Function

The CANCEL statement releases the memory areas occupied by the

programs

named in the clause.

General Format

identifier-1 identifier-2
CANCEL { subprogram-l} [:subprogram-é]

Technical Notes

1.

6.

The CANCEL statement can be used either to reload a segment
of a segmented COBOL program or to cancel a subprogram that
has been loaded into an overlay link by LINK. (Refer to the
COBOL-74 Usage Material, Part 3 of this manual, for
information on specifying LINK overlays and on subprograms.)
Note 2 describes the first case while the remaining notes
describe the second.

When you cancel a segment of a program you cause the
object-time system to read your .EXE file and copy an
initialized version of the segment into memory.

After a subprogram has been cancelled, a subsequent call to
the subprogram will cause a freshly initialized copy to be
brought into memory.

Cancellation of a subprogram causes the entire link in which
it resides and all lower-level links to be cancelled.

A subprogram in the root 1link or higher in the current
overlay structure cannot be cancelled. If an attempt is made
to do so, the CANCEL statement will be ignored and a warning
message issued at runtime.

A subprogram cannot cancel itself or any subprogram that
resides in an overlay link with it. An attempt to do either
will result in the CANCEL statement being ignored and a
warning message issued at runtime.

Cancellation of a subprogram higher in the current calling
sequence is also an illegal operation. But, 1if the
subpragram being cancelled is in a 1lower-level 1link and
higher in the calling sequence, it could be cancelled without
being detected as an error. This would cause the return from
the program to reach an undefined location.

THE PROCEDURE DIVISION

CLOSE
5.9.6 CLOSE
Function
The CLOSE statement terminates the processing of input and output
files, reels, or units.
General Format
[NO REWIND) |
{Lﬂ*} WITH LOCK
UNIT DELETE
CLOSE file-name-1
FOR REMQVAL
- —
— —
NQ REWIND
, {@} WITH LOCK
file-name-2 UNIT S}] DELETE
FOR REMOVAL
CLOSE file-name-1 EJITH LOCK__J Ei]e-name-? ENITH LOCK]:I
Technical Notes

1. Each filename must appear as the subject of an FD entry in
the File Section of the Data Division.

2. The DELETE option applies only to disk and DECtape files. If
this option is included, the file will be deleted from the
device.

3. The REEL, UNIT, and NO REWIND options apply only to magnetic
tape files; UNIT is synonymous with REEL.

4. The FOR REMOVAL option unloads magnetic tape. The file
cannot be re-opened without intervention by the operator.

5. For the purpose of showing the effect of various CLOSE

options as applied to the various storage media, all input,
output, and input-output files are divided into the following
three mutually exclusive categories:

a. NON-REEL A file whose device is such that the concepts
of REWIND, REEL, or ©UNIT have no meaning.
This category includes files residing on
disk, punched cards, paper tape, line
printer, and terminal.

5-27

THE PROCEDURE DIVISION

CLOSE (Cont.)

b. SINGLE REEL A file that is entirely contained on one reel
or unit.

c. MULTI-REEL A file that may be contained on more than one
reel or unit.

The results of each CLOSE option for each of the above types
of files are summarized in Table 5-4. The definitions for
the symbols used in this table are given below. Where the
definition depends upon whether the file 1is an input or
output file, alternate definitions are given; otherwise, the
single definition given applies to both input and output

files.
Codes Used in Table 5-4
A Any subsequent reels of this file will not be processed.
B The current reel is not rewound.
e Standard CLOSE File Procedure is followed:

INPUT and I-O Files

An input file is considered to be at the end-of-file if
the imperative-statement in the AT END clause of a READ
for the file has been executed, and no CLOSE statement
for the file has been executed.

OUTPUT Files

If LABEL RECORDS are STANDARD, an ending 1label is
created and written on the output medium.

D The current reel is rewound and unloaded.

E Any attempt to subsequently OPEN this file will result
in an error message being typed and the run terminated.

F Standard CLOSE REEL Procedure is followed:
INPUT Files
1. If the file is assigned to more than one device, the
next device specified in the ASSIGN clause becomes
the current device. If no other device is

specified, the £first device mentioned becomes the
current device.

2. The standard beginning reel 1label procedure is
performed for the new reel.

OUTPUT and I-0 Files

1. The standard ending reel label procedure is
performed.

THE PROCEDURE DIVISION
CLOSE (Cont.)

2. If the file is assigned to more than one device, the
devices are swapped. A halt occurs to allow the
operator to mount an available reel.

3. The standard beginning reel label procedure is

performed.
G The tape is rewound.
H The file is deleted from the device. However, 1f the

file is a sequential file on disk that is open for
output in supersede mode, the original file will remain
intact (that is, the original, file will not be
superseded nor deleted).

X Illegal. This is an illegal combination of a CLOSE
option and a file type.

If a file is OPENed but not CLOSE@ before the STOP RUN
statement is executed, the file will be automatically CLOSEAd.
Any records still retained by a RETAIN statement will
automatically be freed by a CLOSE statement.

If the file has been specified with an OPTIONAL clause in the
File-Control Paragraph of the Environment Division and the
file was not present for this run, the CLOSE has no effect.

If a CLOSE statement without the REEL or UNIT option has been
executed for a file, a READ, WRITE, or CLOSE statement for
that file must not be executed until another OPEN for that
file has been executed. .

THE PROCEDURE DIVISION

CLOSE (Cont.)
Table 5-4
CLOSE Options and File Types
CLOSE File Type
Options
SINGLE
NON-REEL REEL/UNIT MULTI~-REEL

CLOSE C c,G C,G,A
CLOSE C,E c,G,E c,G,E,A
WITH LOCK
CLOSE WITH X c,B c,B,A
NO REWIND
CLOSE REEL X X F,G
CLOSE REEL X X F,D
WITH LOCK
CLOSE REEL
FOR REMOVAL X X F,D,G
CLOSE REEL X X F,B
WITH NO
REWIND
CLOSE WITH C,H X X
DELETE

5-30

THE PROCEDURE DIVISION

COMPUTE

5.9.7 COMPUTE

Function

The COMPUTE statement assigns to a data item the value of a numeric
data item, literal, or arithmetic expression.

General Format

identifier-2

COMPUTE identifier-1 [:ROUNDED:] [: literal [}OUNDED;[} ..

‘ IS EQUAL TO 1
l

arithmetic-expression

EQUALS j arithmetic-expression [pN SIZE ERROR imperative-statemenﬁ]

Technical Notes

10

The COMPUTE statement allows you to combine arithmetic
operations without the restrictions on the composite of
operands and/or receiving data items imposed by the
arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.
If the composite operand exceeds 19 decimal digits, the
composite is converted to COMP-1 format. This will lead,
however, to a loss of precision.

Identifier-1 must be an elementary numeric or
numeric-edited item.

Identifier-2 must be an elementary numeric item. Literal-2
must be a numeric literal.

The identifier-2 and literal-l options provide a method for
setting the value of identifier-1 equal to identifier-2 or
literal-1l.

The rules for forming arithmetic expressions and the order
of evaluation are given in Section 5.4, Arithmetic
Expressions.

The ROUNDED and SIZE ERROR options are described in Section
5.6, Common Options Associated with the Arithmetic Verbs.

DELETE

THE PROCEDURE DIVISION

5.9.8 DELETE

Function

The DELETE statement removes a specified record from a file whose
organization is RELATIVE or INDEXED.

General Format

DELETE file-name RECORD [}NVALID KEY imperative-statemenﬁ]

Technical Notes

1.

2.

Record-name must be a record associated with a file whose
organization is RELATIVE or INDEXED.

When the DELETE statement is executed, the object-time
system removes from the file the record which has a key
equal in value to the RELATIVE KEY (for relative files) or
the RECORD KEY (for indexed files). 1If no such record
exists, the statement(s) associated with the INVALID KEY
clause is executed.

At the time that the DELETE statement is executed, the file
must be open for OUTPUT or INPUT-OUTPUT.

The INVALID KEY clause must not be specified for a DELETE
statement that references a file that is in
sequential-access mode. It must be specified for a DELETE
statement that references a file that 1is not in
sequential-access mode, and for which no USE procedure is
specified.

For files in the sequential-access mode, the last
input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a
successfully executed READ statement. The OTS logically
removes from the file the record that was accessed by that
READ statement.

The execution of a DELETE statement does not affect the
current record pointer or the contents of the record area
associated with file-name. The execution of the DELETE
statement causes updating of the value of any specified
FILE STATUS data item associated with file-name.

THE PROCEDURE DIVISION

DELETE

5.9.8 DELETE

Function

The DELETE statement removes a specified record from a file whose
organization is RELATIVE or INDEXED.

General Format

DELETE file-name RECORD [}NVALID KEY imperative-statemenﬁ]

MR-S-1322-81

Technical Notes

l. Record-name must be a record associated with a file whose
organization is RELATIVE or INDEXED.

2. Alternate keys cannot be used with this verb.

3. When the DELETE statement is executed, the object-time
system removes from the file the record which has a key
equal in value to the RELATIVE KEY (for relative files) or
the RECORD KEY (for indexed files). If no such record
exists, the statement(s) associated with the INVALID KEY
clause is executed.

4, At the time that the DELETE statement is executed, the file
must be open for OUTPUT or INPUT-OUTPUT.

5. The INVALID KEY clause must not be specified for a DELETE
statement that references a file that is in
sequential-access mode. It must be specified for a DELETE
statement that references a file that is not in
sequential-access mode, and for which no USE procedure is
specified.

6. For files 1in the sequential-access mode, the last
input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a
successfully executed READ statement. The OTS logically
removes from the file the record that was accessed by that
READ statement.

7. The execution of a DELETE statement does not affect the
current record pointer or the contents of the record area
associated with file-name. The execution of the DELETE
statement causes updating of the value of any specified
FILE STATUS data item associated with file-name.

THE PROCEDURE DIVISION

DISPLAY

5.9.9 DISPLAY

Function

The DISPLAY statement causes low-volume data to be written to your

terminal.

General Format

DISPLAY {

literal-1 } {identifier-Z}
identifier-1 literal-2

[gggu mnemonic-name] [WITH NO ADVANCING]

MR-5-1050-81

Technical Notes

1.

2.

The contents of each operand are written on your terminal
in the order listed.

Each of the literals can be numeric, nonnumeric, or one of
the figurative constants. If a figurative constant is
specified as one of the operands, only a single occurrence
of that constant is written on the device. The figurative
constants SPACE, SPACES, or ALL SPACES, or a literal
defined as spaces will not DISPLAY as they are considered
as trailing spaces on the line and the optimized OTS does
not print trailing spaces.

The mnemonic-name must appear in the CONSOLE clause in the
Special-Names paragraph of the Environment Division.

If WITH NO ADVANCING is specified, the terminal does not
advance to the next line. Thus, printing or type-in can
continue on the same line. If you do not specify the WITH
NO ADVANCING clause, the terminal advances to the next line
after printing the text of the DISPLAY statement.

5-34 October 1985

THE PROCEDURE DIVISION

DIVIDE (Cont.)

Each DIVIDE statement must contain two operands (that is, a
dividend and a divisor). Both of these operands
(identifier-1 and identifier-2) must refer to elementary
numeric items. Identifier-3 may be an elementary numeric or
numeric-edited item. Each literal-l or literal-2 must be a
numeric literal. Identifier-4 may be an elementary numeric
or numeric-edited item. '

The ROUNDED and SIZE ERROR options are described in Section
5.6, Common Options Associated with Arithmetic Verbs.

If the REMAINDER clause is wused, the resulting remainder
replaces the value of identifier-4.

The data item resulting from the divide operation (that is,
the sum of the digits in the dividend and the digits in the
fractional part of the divisor) must not contain more than 20
decimal digits for the non-BIS compiler and not more than 36
digits for the BIS~compiler. 1In either case, a maximum of 18
digits can be stored in the receiving field. (See Section
1.1 for a definition of the BIS-compiler.)

The remainder is checked for a size error after the quotient
is checked, whether or not the quotient has a size error. If
either the quotient or the remainder has a size error, the
object-time system follows the procedure described in Section
5.6, Common Options Associated with Arithmetic Verbs.

The ROUNDED option does not apply to the remainder; the
remainder is always truncated.

THE PROCEDURE DIVISION

ENTER

5.9.11 ENTER
Function
The ENTER statement allows the execution of MACRO and FORTRAN

subroutines in conjunction with the COBOL program.

General Format

‘MACRO I ‘ identifier-1 I ’ identifier-2)
ENTER FORTRAN USING literal-1 literal-2
ICOBOL ‘ lprocedure-name~1‘ (procedure-name-Z‘

Technical Notes

1. MACRO refers to MACRO-10 or MACRO-20 assembly language and
FORTRAN to the TOPS-10 or the TOPS-20 FORTRAN language.

2. The program-name can be enclosed in quotation marks.

3. The ENTER statement generates a subroutine call and specifies
the address where the items associated with the USING clause
are located. (Refer to the COBOL-74 Usage Material, Part 3
of this manual, for more information on the ENTER statement.)

4. ENTER COBOL is equivalent to CALL.

5.9.12

Function

THE PROCEDURE DIVISION

ENTRY

ENTRY

The ENTRY statement establishes an entry point in a subprogram.

General

Format

ENTRY entry-name [:PSING identifier-1 EEdentifier—ij ..:] .

Technica
1.

2.

3.

1 Notes
The ENTRY statement can only be used in a subprograh.

Control is passed to the entry point by a CALL statement in a
calling program.

Entry-name is a one to six character name that <can contain
only letters and digits. It can, however, be enclosed in
quotation marks. This name must not be the same as any other
entry-name or PROGRAM-ID in any program with which the
subprogram containing it is loaded.

The identifiers listed in the USING clause must be defined as
0l1- or 77-level items in the Linkage Section of the

subprogram containing the ENTRY statement.

The number of operands in the USING clause of an ENTRY
statement must be less than or equal to the number of
operands in any CALL statement referencing that ENTRY
statement.

The identifiers in the USING clause indicate those data items
in the called program that may reference data items in the
calling program. The order of identifiers in the CALL
statement in the calling program and in the ENTRY statement
in the called program is critical. The items in the USING
clauses are related by their corresponding positions, not by
name. Corresponding identifiers refer to a single set of
data that 1is available to both the calling and called
programs.

At runtime, ENTRY statements are ignored unless there are
specific calls to them.

Refer to the COBOL-74 Usage Material, Part 3 of this manual,
for more information on subprograms.

EXIT

5.9.13

Function

The EXIT
routines

General

paragraph-

Technica
1.

2.

THE PROCEDURE DIVISION

EXIT

statement provides a common end point for a series of
executed by a PERFORM or USE statement.

Format

name. EXIT.

1 Notes
EXIT must be the only sentence in the paragraph.

The EXIT statement may be used at the end of a section in the
Declaratives, or to provide an end point for a series of
paragraphs that are performed. When you use EXIT at the end
of the range of a PERFORM or USE, you can provide a variety
of exits from the performed procedure by making each point at
which an exit is required a transfer to the EXIT paragraph.
However, unless EXIT is specified as the end of the range of
a PERFORM or USE or is placed as the last paragraph in the
range of a PERFORM or USE, it is ignored.

Example:

PERFORM TAX-ROUTINE THROUGH EXIT-RTE.

TAX-ROUTINE.
IF TOTAL-TAX IS EQUAL TO OR GREATER THAN TAX-LIMIT
GO TO EXIT-RTE.
MULTIPLY.....

DEDUCTION-RTE.
IF NO-OF-DEPENDENTS 1S EQUAL TO ZERO
GO TO EXIT-RTE.
MULTIPLY NO-OF-DEPENDENTS BY DEP-DEDUCT....

EXIT-RTE. EXIT.

If control reaches an EXIT statement and no associated
PERFORM or USE statement is active or if EXIT is not the last
paragraph in the range of a PERFORM or USE statement even if
the PERFORM or USE statement 1is active, control passes
through the EXIT paragraph to the first statement of the next
paragraph.

5.9.14

Function

THE PROCEDURE DIVISION

EXIT PROGRAM

EXIT PROGRAM

The EXIT PROGRAM statement is used to return control from a subprogram
to its calling program.

General Format

Technical Notes

1.
2.

EXIT PROGRAM can only appear in a subprogram.

When an EXIT PRQGRAM statement is executed, control is
returned to the calling program at the statement immediately
following the CALL statement.

If an EXIT PROGRAM statement is encountered in a subprogram
that is operating as a main program, it is ignored.

Refer to the COBOL-74 Usage Material, Part 3 of this manual,
for more information on subprograms.

THE PROCEDURE DIVISION

FREE

5.9.15 FREE

Function

The FREE statement explicitly frees records that have been retained in

a RETAIN statement.

General Format

identifier-1
literal-1

]

RECORD [KEY {
file-name-1

EVERY RECORD

FREE 1

RECORD [KEY {
file-name-2

EVERY RECORD

EVERY RECORD
\

[NOT RETAINED statement-1 [statement-2]

Technical Notes

1. Filename-1, filename-2...

records that have been retained.

Thus,

identifier-2
literal-2

have been opened for simultaneous update.

Identifier-1, identifier-2... and
specify the value of a key.

be freed in the file.

literal-l1,

}

are the names of files

literal-2...
This key refers to the record to

are any valid COBOL statements.

3. Statement-1l, statement-2...
4. The FREE statement is needed to explicitly free records
have not been implicitly

could occur when the RETAIN statement contains
FREED phrase, when an I/0 statement is not issued after the
RETAIN statement, or when the FOR clause of the

statement specifies ANY VERB.

freed by an I/0 statement.

Refer to the RETAIN statement,
Section 5.9.29, for a description of its function and syntax.

containing
they are files that

10.

11.

THE PROCEDURE DIVISION
FREE (Cont.)

The EVERY RECORD phrase is used to free all records retained
or to free all records retained in a specific file.

The NOT RETAINED phrase specifies the COBOL statements to be
executed when one or more records to be freed are not
currently retained. If the NOT RETAINED phrase is not
included and the records to be freed are not currently
retained, the program proceeds and you are not notified of
the possible error.

When an EVERY RECORD phrase is used, the statements in the
NOT RETAINED phrase are executed only if no records are
currently retained or only if no records are currently
retained in the specified file.

If the FREE statement includes a file that was not opened for
simultaneous update, the NOT RETAINED statements, if present,
are executed. Otherwise, the program continues and you are
not notified of the error.

You can mix records from sequential, relative, and
indexed-sequential files in the same FREE statement.

All records of a file are freed automatically when the file
is closed including those records that were retained with an
UNTIL FREED clause in the RETAIN statement.

The record to be freed, whether or not the KEY phrase is
specified, depends on the organization of the file. Each
organization is described separately below.

a. Sequential Files

If the KEY phrase is specified, the wvalue of the key
refers to the record with that wvalue in the RETAIN
statement. That is, a KEY value of 6 in the FREE
statement frees the record defined with a KEY value of 6
in the RETAIN statement.

If the KEY phrase is not specified, the record freed is
that record defined with a KEY value of 0 in the RETAIN
statement.

The value of a key can be specified by any identifier,
which can be subscripted and/or qualified, provided that
its USAGE is COMPUTATIONAL or INDEX. The value of the
key can also be specified by a positive integer numeric
literal containing ten or fewer digits.

b. Random Files

If the KEY phrase is specified, the value of the key
refers to the record with that wvalue in the RETAIN
statement. For example, a KEY value of 0 in the FREE
statement frees the record defined with a KEY value of 0
in the RETAIN statement.

If the KEY phrase is not specified, the record freed is
that record defined by the ACTUAL KEY of the file.

5-41

THE PROCEDURE DIVISION

FREE (Cont.)

The value of a key can be specified by any identifier,
which can be subscripted and/or qualified, provided that
its USAGE is COMPUTATIONAL or INDEX. The value of a
can also be specified by a positive integer numeric

literal containing ten or fewer digits.
c. Indexed-Sequential Files

If the KEY phrase is specified, its value refers

record with that value in the RETAIN statement. That is,

a key identified with a value of "ABC" in the
statement frees the record identified as "ABC"

RETAIN statement. If LOW~VALUES is used as the value
the key, it refers to the next record after the current
record, which is not necessarily the record identified by
LOW-VALUES in the RETAIN statement. This is because the
current record 1is changed by an I/O statement
LOW-VALUES always refers to the record following the

current record.

The value specified in the KEY phrase must normally be an
identifier that. specifies a field that agrees with the

RECORD KEY defined for the file in size, class,

and number of decimal places. However, if the RECORD KEY
of the file is USAGE COMPUTATIONAL or INDEX, a positive
integer numeric 1literal of ten or fewer digits can be

used as the value in the KEY phrase.

If the KEY phrase is not specified, the record freed
that record defined by the RECORD KEY of the file.
the RECORD KEY contains LOW-VALUES, it refers to the next
record after the current record, which is not necessarily

the record specified by LOW-VALUES 1in the

statement. This is because the current record is changed

by an I/0 statement and LOW-VALUES refers to the
following the current record.

Examples

Sequential File

RETAIN HISTORY KEY 0 FOR READ-WRITE UNTIL FREED,
HISTORY KEY 1 FOR READ-WRITE UNTIL FREED,
HISTORY KEY 2 FOR READ-WRITE.

READ HISTORY, AT END STOP RUN.

FREE HISTORY EVERY RECORD.

Random File

RETAIN PART KEY 0 FOR ANY VERB.
READ PART, INVALID KEY GO TO ERR.
WRITE PARTREC.

FREE PARK KEY 0.

Indexed-Sequential File
MOVE "B" TO RECORD-KEY.

RETAIN LETTERS FOR READ.
FREE LETTERS.

THE PROCEDURE DIVISION

GENERATE

5.9.16 GENERATE

Function

The GENE
automatic
report gr

RATE statement causes the Report-Writer to execute all
report operations, and, if required, to produce one or more
oups.

General Format

GENERATE

{data-name }
report-name

Technical Notes

1.

If identifier is the name of a TYPE DETAIL report group, the
GENERATE statement performs all the automatic report
operations, and produces an output detail report group on the
output file. This is called detailed reporting.

If the identifier is the name of an RD entry, the GENERATE
statement performs all the automatic report operations, but
does not produce an output detail report group. This is
called summary reporting.

A GENERATE statement performs the following automatic
operations:

a. It steps and tests the LINE-COUNTER and/or PAGE-COUNTER
to produce, 1if necessary, any PAGE FOOTING and PAGE
HEADING report groups.

b. It recognizes any specified control breaks to produce
appropriate CONTROL FOOTING and CONTROL HEADING report
groups, and resets appropriate summation counters.

c. It accumulates into the summation counters all specified
identifiers.

d. It executes any routines defined by a USE statement.

e. In detailed reporting, it produces the detailed report
group.

During the execution of the first GENERATE statement for a
report, the following groups, if specified, are produced:

a. Report Heading
b. Page Heading
c. All Control Headings, in the order major to minor

d. The detail report group, in detailed reporting

THE PROCEDURE DIVISION

GENERATE (Cont.)

5.

Data 1is moved to the data item in the Report Group
Description Entry according to the same rules for movement
described for the MOVE statement.

A GENERATE statement for a particular report may not be
executed wuntil an INITIATE statement has been executed for
that report. 1In addition, if a TERMINATE statement has been
executed for that report, a GENERATE statement may not be
executed until an intervening INITIATE statement is executed
for the report.

5.9.17
Function
The GO T

the Proc

General

THE PROCEDURE DIVISION

GO TO

GO TO

O statement causes control to be transferred from one part of
edure Division to another.

Format

GO TO [brocedure—name-1:

GO TO procedure-name-1 [:procedure-name-z:] Ce procedure-name-n

DEPENDING ON identifier

Technical Notes

1.

2.

Each procedure-name is the name of a paragraph or section in
the Procedure Division of the program.

Format 1 causes transfer of control to the specified
procedure-name, or to some other procedure-name if the GO TO
has been previously altered.

In order to be alterable, format 1 must appear as the first
sentence in a paragraph.

If procedure-name-1 is not specified, the GO TO must be
alterable and an associated ALTER statement must be executed
prior to executing this GO TO.

When this form of GO TO appears in an imperative sentence, it
must appear as the last or only statement in the sentence.

Format 2 causes transfer ‘of control to procedure-name-1,

procedure-name-2,... or procedure-name-n depending on
whether the value of the identifier is 1, 2, ... or n,
respectively.

The identifier must refer to an elementary numeric item
having no positions to the right of the decimal point. The
item may not be USAGE COMPUTATIONAL-1.

If the value of the identifier is other than the positive
integers 1, 2, ... or n, the GO TO statement is by-passed.

GOBACK

THE PROCEDURE DIVISION

5.9.18 GOBACK

Function

The GOBACK statement is used in a subprogram to return control to the
calling program.

General Format

GOBACK.

Technical Notes

1.

2.

The GOBACK statement can only be used in subprograms.

When control reaches:'a GOBACK statement, control is returned
to the calling program at the statement immediately following
the CALL statement.

If a GOBACK statement is encountered in a subprogram that is
operating as a main program, it is treated as a STOP RUN
statement.

Refer to the COBOL-74 Usage Material, Part 3 of this manual,
for more information on subprograms.

5.9.19

Function

The IF s

THE PROCEDURE DIVISION

IF

tatement causes a conditional expression to be evaluated and

subsequent operations to be determined as a result of this evaluation.

General Format

IF conditi

Technica

l.

2.

statement-1 statement-2
on {NEXT SENTENCE} [ELS—E- WNEXT SENTENCE}]

1l Notes

Conditional expressions are discussed in Section 5.5 in this
chapter.

The subsequent action of the program is determined by whether
the conditional expression is true or false.

a. If the conditional expression is true and statement-1 and
any following statements are given, statement-1 and any
following statements are executed and, provided that they
do not contain a GO TO or STOP RUN, control passes to the
next sentence. If the conditional expression is true and
NEXT SENTENCE is given, control passes to the next
sentence.

b. If the conditional expression is false and statement-3
and any following statements are given, statement-3 and
any following statements are executed and, provided that
they do not contain a GO TO or STOP RUN, control passes
to the next sentence.

If the conditional expression is false and either ELSE
NEXT SENTENCE is given or the entire ELSE clause is
omitted, control passes to the next sentence.

The 1length of compared data-items in the conditional
expression of an IF statement is limited to 2047 characters.

Statement-1, statement-2, statement-3, and statement-4 may
include any statement or sequence of statements, including
other IF statements. IF statements included within other 1IF
statements are nested. Nested IF statements are paired IF
and ELSE combinations and may continue up to 12 levels deep.
Each ELSE encountered is paired with the nearest preceding IF
not already paired with an ELSE. The pairing process begins
with the innermost IF ... ELSE pair and proceeds outwards.

THE PROCEDURE DIVISION

IF (Cont.)

Example: (c=condition;s=statement)

-
[F ¢l IF ¢-2 52 ELSE IF ¢-35-3 ELSE 54 ELSE 5.5,

L l

Next

wence

MR-8-027-79

5.9.20

Function

The INIT

THE PROCEDURE DIVISION

INITIATE

INITIATE

IATE statement is used to initialize all counters before a

report is produced.

General Format

INITIATE report-name-1 [report-name-2]

Technica

1.

2.

1l Notes

Each report-name must be defined by an RD entry in the Report
Section of the Data Division.

The INITIATE statement resets all data-name entries that
contain SUM clauses associated with a report.

The PAGE-COUNTER is set to 1 during the execution of an
INITIATE statement. If a different starting value for the
PAGE-COUNTER is desired, it may be reset following the
INITIATE statement before the execution of the first GENERATE
statement.

The LINE-COUNTER is set to 0 during execution of the INITIATE
statement.

The INITIATE statement does not open the file with which the
report is associated. An OPEN statement must be executed
prior to the execution of the INITIATE statement.

A second INITIATE statement for a particular report-name may

not be executed until a TERMINATE statement for that
report-name is executed.

INSPECT

5.9.21

Function
The INSP

number
a data 1

General

THE PROCEDURE DIVISION

INSPECT

ECT statement counts, replaces, or counts and replaces the
of occurrences of a given character or groups of characters in

tem.

Format

INSPECT identifier-1 TALLYING

%dentifi

ALL identifier-3 . P
er-2 _FQ_B_‘ {{LEADING} {11‘tera1-1 }}B,BHE'T:SEE} INITIAL {{figgf‘g“‘}]}
| \CHARATTERS AFTER

—— —

INSPECT identifier-1 REPLACING

identifier-6 BEFORE identifier-7
Q‘wy{meral-a }[{AFTER} L {Htera'i-s }]

ALL . : s . . ; . ps
y—=% identifier-5 identifier-6) [(BEFORE identifier-7
{{-——ﬁﬁg}”e}{{nterahg } BY {1 Tserates }[{A‘FTER} INITIAL {11‘tera1-5 }]{ }

INSPECT identifier-1 TALLYING

identifier-2 fgg{{

REPLACING

CHARACTERS BY {

ALL identifier-2 . s
{Cehome) 1iseral-1 }} [{ﬁﬁ?gs‘z} INITIAL {}figﬁ;ﬂg“}]
CHARACTERS AFTER

identifier-6 BEFORE {1dent1’fier-7}]
literal-4 }[{AFTER} INITIAL literal-5

ALL

Technic
The fol
1.

2.

-3 identifier-5 identifier-6 BEFORE identifier-7
{{WLEADING} §{1itera1-3 } BY {ifoeeat s }[{AFTR} INITIAL {11‘tera1-5 }]}}

al Notes
lowing rules apply to Formats 1, 2 and 3:

Each literal must be nonnumeric and may be any figurative
constant except ALL.

The usage of all identifiers must be DISPLAY, implicitly or
explicitly. Identifier-1 must reference either a group item
or any category of elementary item. Identifier-3...
identifier-n must reference either an elementary, alphabetic,
alphanumeric or numeric item.

THE PROCEDURE DIVISION

INSPECT (Cont.)

2, The usage of all identifiers must be DISPLAY, implicitly or
explicitly. Identifier-1 must reference either a group
item or any category of elementary item. Identifier-3...
identifier-n must reference either an elementary,
alphabetic, alphanumeric or numeric item.

3. If there is more than one TALLYING and/or REPLACING to be
made in the same INSPECT statement, it is not the same as
two or more separate INSPECT statements, each with only one
of the comparisons. In this case, the following rules
apply:

a. The 1identifiers and 1literals £for TALLYING and/or
REPLACING are accepted in the order they are specified
in the INSPECT statement from left to right. The first
literal~1l, 1literal-3 is compared to an equal number of
contiguous characters, starting with the leftmost
character position in identifier-1. Literal-l,
literal-3, and that portion of the contents of
identifier-1 match if they are equal, character for
character.

b. If no match occurs in the comparison of the first
literal=-l1l, 1literal-3, the comparison is repeated with
each successive literal-l, literal-3, until a match is
found. When a successive literal-1l, literal-3 do not
exist, the character position in identifier-1
immediately to the right of the leftmost character
position is considered the leftmost character position,
and the comparison begins again with the first
literal-1l, literal-3.

c. When a match occurs, TALLYING and/or REPLACING takes
place as described in notes 6 and 11 below. The
character position in identifier~-1 immediately to the
right of the of the rightmost character position that
matched is now the 1leftmost character position of
identifier-1 and the comparison begins again with the
first literal-l, literal-3.

d. The comparison continues until the rightmost character
position of identifier-1 has matched or has already
been considered as the 1leftmost character position.
When this occurs, the INSPECT statement is terminated.

e, If CHARACTERS is specified, an 1implied one character
participates in the cycle as described in notes 3a and
3b above, except no comparison to the contents of
identifier-1 takes place. This one character 1is
considered to match the 1leftmost character of the
contents of 1identifier-l1 occurring in the current
comparison.

The following rules apply to Format 1:

4, Identifier—-2 must reference an elementary numeric data
name., It should be defined as a l-word COMP field with a
PICTURE of 9(108) to avoid any possible truncation warning
messages, If either literal-l or literal-2 is a figurative
constant, the figurative constant refers to an implicit
one-character data item.

5-51 October 1985

THE PROCEDURE DIVISION

INSPECT (Cont.)

The contents of the data item referenced by identifier-2 is
not initialized by the execution of the INSPECT statement.

The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one (1)
for each occurrence of 1literal-1 matched within the
contents of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the
data item referenced by identifier-2 is incremented by
one (1) for each contiguous occurrence of 1literal-1
matched within the contents of the data item referenced
by identifier-1, provided that the leftmost such
occurrence 1is at the point where comparison began in the
first comparison cycle in which literal-1 was eligible to
participate.

c. If the CHARACTERS phrase is specified, the contents of
the data item referenced by identifier-2 is incremented
by one (1) for each character matched, within the
contents of the data item referenced by identifier-1.

The following rules apply to Format 2:

7.

10.

11.

The size of the data referenced by literal-4 or identifier-6
must be equal to the size of the data referenced by literal-3
or identifier-5. When a figurative constant is used as
literal-4, the size of the figurative constant is equal to
the size of literal-3 or the size of the data item referenced
by identifier-5.

When the CHARACTERS phrase is used, literal-4, literal-5, or
the size of the data item referenced by identifier-6 or
identifier-7 must be one character in length.

When a figurative constant is used as 1literal-3, the data
referenced by literal-4 or identifier-6 must be one character
in length.

The required words ALL, LEADING and FIRST are adjectives that
apply to each succeeding BY phrase until the next adjective
appears.

The following rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character
matched in the contents of the data item referenced by
identifier-1 is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of

literal-3 matched in the contents of the data item
referenced by identifier-1 is replaced by literal-4.

5-52

THE PROCEDURE DIVISION

INSPECT (Cont.)

c. When the adjective LEADING is specified, each
contiguous occurrence of 1literal-3 matched in the
contents of the data item referenced by identifier-1 is
replaced by 1literal-4, provided that the leftmost
occurrence is at the point where comparison began in
the first comparison cycle in which 1literal-3 was
eligible to participate.

d. When the adjective FIRST 1is specified, the 1leftmost
occurrence of literal-3 matched within the contents of
the data item referenced by identifier-1 is replaced by
literal-4.

The following rules apply to Format 3:

12, 1Identifier-2 must reference an elementary numeric data
item. It should be defined as a l-word COMP field with a
PICTURE of 9(18) to avoid any possible truncation warning
messages.

13. If either literal-l or literal-2 is a figurative constant,
the figurative constant refers to an implicit one-character
data item.

14, The size of the data referenced by literal-4 or
'~ identifier-6 must be equal to the size of the data
referenced by literal-3 or identifier-5. When a figurative
constant 1is used as literal-4, the size of the figurative
constant is equal to the size of literal-3 or the size of

the data item referenced by identifier-5.

15. When the CHARACTERS phrase is used, 1literal-4, 1literal-5,
or the size of the data item referenced by identifier-6 or
identifier-7 must be one character in length.

16. When a figurative constant is used as literal-3, the data
referenced by 1literal-4 or identifier-6 must be one
character in length.

17. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the
same identifier-1 had been written with one statement being
a Format 1 statement with TALLYING phrases identical to
those specified in the Format 3 statement, and the other
statement being a Format 2 statement with REPLACING phrases
identical to those specified in the Format 3 statement.
The general rules given for matching and counting apply to
the Format 1 statement and the general rules given for
matching and replacing apply to the Format 2 statement.

5~-53 October 1985

THE PROCEDURE DIVISION

INSPECT (Cont.)

Examples
The field TXT-FLD contains "PSYCHOANALYSIS".

INSPECT TXT-FLD TALLYING COUNTER~1] FOR CHARACTERS BEFORE
INITIAL "A".

COUNTER-1 contains 6
INSPECT TXT-FLD REPLACING "A" BY "X" BEFORE INITIAL "N".
TXT-FLD ends with "PSYCHOXNALYSIS"

INSPECT TXT-FLD TALLYING COUNTER-1] FOR CHARACTERS AFTER
INITIAL "S", REPLACING ALL "S" BY "z".

TXT-FLD ends with "PZYCHOANALYZIZ"
COUNTER-1 contains 12

10,

11.

THE PROCEDURE DIVISION
MERGE (Cont.)

MERGE statements may appear anywhere in the Procedure
Division except in the DECLARATIVES portion or in an INPUT or
OUTPUT PROCEDURE associated with a SORT, or an OUTPUT
PROCEDURE associated with another MERGE.

When the ASCENDING clause is used, the input files must be in
sequence from the lowest values to the highest values; when
the DESCENDING clause is used, the input files must be 1in
sequence from the highest values to the lowest values.

The OUTPUT PROCEDURE, if present, must consist of one or more
sections or paragraphs that appear contiguously in the source
program and do not form a part of any INPUT PROCEDURE. The
OUTPUT PROCEDURE must contain at least one RETURN statement
in order to make MERGEd records available for processing.

ALTER, GO, and PERFORM statements in the OUTPUT PROCEDURE may
not refer to procedure-names outside the OUTPUT PROCEDURE in
which they appear.

If you specify an OUTPUT PROCEDURE, it is performed by the
MERGE statement. You must observe all rules relating to the
range of a PERFORM.,

If WITH SEQUENCE CHECK is present then the input files are
checked to make sure that the records are in sequence with
respect to the merge keys (that 1is, that the files were
presorted.) A warning message is given for each record out
of order.

If you specify the GIVING option, all the merged records in
file-name-1 are automatically transferred to file-name-5.
File-name-5 must not be open when the MERGE statement is
executed. Any USE PROCEDURES associated with file~name-5
will be executed as appropriate. The GIVING option 1is
equivalent to the following OUTPUT PROCEDURE:

L4. OPEN OUTPUT file-name-5.

L5. RETURN sort-file INTO record-name-5; AT END GO TO Lé6.
WRITE record-name-5.

GO TO L5.

L6. CLOSE file-name-5.

Refer to the SORT/MERGE User's Guide for more information on
MERGE.

THE PROCEDURE DIVISION

MOVE
5.9.23 MOVE
Function
The MOVE statement transfers data in accordance with the rules of
editing, from one data area to one or more data areas.
General Format
identifier-1 . . L. . ..
MOVE {11tera1 } T0 identifier-2 [: 1dent1f1er-3:]
MovE JCORRESPONDINGY 4o/ tifier-1 T0 identifier-2
—— |cORR T
Technical Notes
1. CORR may be interchanged with CORRESPONDING.
2. Identifier-1 (or literal-l) represents the data to be moved
and 1is called the sending item. Identifier-2, identifier-3,
... represent the receiving data items.
3. In format 1, the data contained in identifier-1 or 1literal-1l

is moved first to identifier-2, then to identifier-3, etc.

In format 2, data items within the group item associated with
identifier-1 are moved to corresponding data items within the
group item associated with identifier-2. The results are the
same as 1if you had referred to each pair of corresponding
identifiers in separate MOVE statements. The «criteria used
to determine whether two items are -corresponding are
described in Section 5.7, The CORRESPONDING Option.

The following rules apply to both group and elementary items;
a group item is treated as a single field.

a. A numeric-edited, alphanumeric-edited, or alphabetic data
item must not be moved to a numeric or numeric-edited
data item.

b. A numeric or numeric-edited item must not be moved to an
alphabetic data item.

c. A numeric item whose implicit decimal point is not
immediately to the right of the least significant digit
must not be moved to an alphanumeric or
alphanumeric-edited item.

d. All other moves are iegal.

5.

THE PROCEDURE DIVISION

MOVE (Cont.)

The following rules apply to all legal moves.

a. When an alphanumeric, alphanumeric edited, or alphabetic
item is the receiving item:

1. If the size of the sending field is greater than the
size of the receiving field, the least significant
(rightmost) characters are truncated if the receiving
field is not described by a JUSTIFIED RIGHT clause;
the most significant (leftmost) characters are
truncated if the receiving field is described as
JUSTIFIED RIGHT.

2. If the size of the sending field 1is 1less than the
size of the receiving field, spaces are placed in the
remaining rightmost characters of the receiving field
if the receiving field 1is not described by a
JUSTIFIED RIGHT clause; spaces are placed in the
remaining 1leftmost characters of the receiving field
if the receiving field is described by a JUSTIFIED
RIGHT clause.

3. If the sizes of the sending and receiving field are
equal, no truncation or filling with spaces takes
place. ‘

b. When a numeric or numeric-edited item is the receiving
item, the sending and receiving fields are aligned by
decimal point. If the sending field is not numeric, the
decimal point is assumed to be on the right. Any
necessary zero filling takes place before editing. If
the receiving item has no operational sign, the absolute
value of the sending item is stored. If the receiving
item has fewer digits to the left or right of the decimal
point than does the sending item, the excess digits are
truncated. If the sending item contains any nonnumeric
characters, the result is unpredictable.

c. Any necessary conversion of data from one. form of
internal representation to another is performed
automatically during the move, along with any editing
specified by the PICTURE of the receiving item.

Any move that is not an elementary move (that is, neither the
sending or receiving items are elementary items) is called a
group move. A group move 1is treated as if it were an
alphanumeric-to-alphanumeric elementary move except that
there is no conversion of data from one form of internal
representation to another. In other words, the individual
data descriptions of the items within the sending group item
and the receiving group item are completely ignored and both
items are treated as though they were described by a PICTURE
IS X(n) clause, where n is the number of character positions
in the particular itenm.

THE PROCEDURE DIVISION

MULTIPLY

5.9.24 MULTIPLY

Function

The MULTIPLY statement causes numeric data items to be multiplied and

sets the

values of data items equal to the results.

General Format

MULTIPLY {ide"tifier'l} BY identifier-2 [:ROUNDED:]

literal-1

identifier-3 [:ROUNDEDi] RN [:QN SIZE ERROR imperative-statemen{]

literal-1 literal-2

MULTIPLY {ide"tifier'l} BY {ide"tiﬁie”‘z} GIVING identifier-3 [:ROUNDED:]

identifier-4 [:ROUNDED:] e [:ON SIZE ERROR imperative—statement:]

Technical Notes

1.

Each MULTIPLY statement must contain at least two operands (a
multiplicand and a multiplier). Each identifier must refer
to an elementary numeric item, except that identifier-3 in
format 2 may refer to either a numeric or a numeric-edited
item. Each literal must be a numeric literal; the
figurative constant ZERO is permitted.

Format 1 causes the value of identifier-l1l or literal-l to be
multiplied by the value of identifier-2. The resultant
product replaces the value of identifier-2. The same process
happens again, with identifier-3 replacing identifier-2, then
identifier-4 replacing identifier-3, until all multipliers
have been used.

Format 2 causes the value of identifier-1 or literal-l to be
multiplied by the value of identifier-2 or literal-2. The
resultant product is stored in identifier-3, identifier-4,
and so on.

The ROUNDED and SIZE ERROR options are described in Section
5.6, Common Options Associated with Arithmetic Verbs.

Despite the possiblity of sequential multiplication taking
place, there can never be more than two operands in use at
one time. The total number of digits in both operands must
not be more than 18 decimal digits for the standard compiler
and not more than 36 digits for the BIS-compiler. In either
case, a maximum of 18 digits can be stored in the receiving
field. (See Section 1.1 for a definition of the
BIS-compiler.)

THE PROCEDURE DIVISION

OPEN

5.9.25 OPEN
Function
The OPEN statement initiates the processing of files and, where

necessary, performs the checking and writing of labels. It also
specifies your covenants for opening a file for simultaneous update.

General Format

INPUT | REVERSED [REVERSED
{ Qubur } file-name-1 [WITH NO_REWIND [file-name-2 [WITH NO RENIN&]?

READ
1-0 REWRITE l ‘
—_— file-name-3 FOR 4 WRITE ND
{ INPUT-QUTPUT } —) DELETE ‘ _—
ANY VERB

ANY VERB

OPEN ¢

RI REWRITE 1
file-name-4 EQR WRITE g

TE ; AND

NON

READ READ

REWRITE REWRITE
ALLOWING QTHERS < {ovTe AND { uRTTE

VERB

NONE NONE
READ READ
REWRITE REWRITE
ALLOWING QTHERS i=TTE AND § URITE
DELETE DELETE
NY V ANY VER

[exTeND J filename-5 C fitename-6]

[ﬁUNAVAILABLE statement-1 [statement-2 J ...] .

N

THE PROCEDURE DIVISION

OPEN (Cont.)

Technical Notes

1.

The OPEN statement must be executed for a file prior to the
execution of any I/0 verbs, such as READ, WRITE, DELETE,
REWRITE, SEEK, or CLOSE.

A second OPEN statement for a file cannot be executed prior
to the execution of a CLOSE statement for that file.

An OPEN statement does not obtain or release the first record
of a file. A READ statement must be executed to obtain the
first record (or a WRITE statement must be executed to
release the first record).

The maximum number of files that can be opened at a time is
16. When indexed-sequential files are being used, each
indexed-sequential file is treated as two files: the index
file and the data file. If the program is segmented, one
less file can be open; similarly, if the RERUN option is
being used, one less file can be open. The key word INPUT,
OUTPUT, INPUT-OUTPUT, or I-O applies to each subsequent
filename until another such key word is encountered or until
the end of the OPEN statement is reached.

The NO REWIND option has meaning only for magtape files and
is ignored for all other devices. 1If the NO REWIND clause is
not specified for a tape file, the tape 1is rewound to the
beginning of the tape.

If a file has been described with LABEL RECORDS ARE STANDARD,
standard 1label checking or label writing is performed. If a
file has been described as LABEL RECORDS ARE OMITTED, no
label checking or writinag is performed.

If an INPUT file 1is described as OPTIONAL (in the
FILE-CONTROL paragraph), the object-time system will type the
message

IS file-name PRESENT?

and wait for the operator to type YES or NO. If he types NO,
the first READ statement for this file causes the
imperative-statement at the AT END or INVALID KEY clause to
be executed.

The I-O or INPUT-OUTPUT options permit the opening of a file
on a random-access device for both input and output
processing. When the I-O option is specified, the execution
of the OPEN statement causes the standard beginning label
procedures to be executed. If the file does not exist when
it is opened for INPUT-OUTPUT, an empty file is created.

A file is opened for simultaneous update if the ALLOWING
OTHERS clause 1is present in the OPEN statement. It must be
opened in I-O mode and cannot have a recording mode of V
(variable-length EBCDIC).

THE PROCEDURE DIVISION

OPEN (Cont.)

Technical Notes

1'

1g.

The OPEN statement must be executed for a file prior to the

execution of any 1I/0 verbs, such as READ, WRITE, DELETE,
REWRITE, or CLOSE,

The compiler calculates a blocking factor for any unblocked
file that is opened for I/0. Therefore, files opened for I/0
should have explicit blocking factors.

When an OPEN I-0 statement is executed, the file position
indicator is set to the first record in the file.

When an OPEN I-0 statement specifies a nonexisting file, the
file 1is created. However, ISAM files must exist for an OPEN
I-0 statement.,

When your program executes an OPEN verb, the record area for
that file is cleared.

A second OPEN statement for a file cannot be executed prior
to the execution of a CLOSE statement for that file.

An OPEN statement does not obtain or release the first record
of a file. A READ statement must be executed to obtain the
first record (or a WRITE statement must be executed to
release the first record).

The maximum number of files that can be opened at a time |is
16. When indexed-sequential files are being used, each
indexed-sequential file is treated as two files: the index
file and the data file. If the program is segmented, one
less file can be open; similarly, if the RERUN option |is
being used, one less file can be open. The key word INPUT,
OUTPUT, INPUT-OUTPUT, or 1I-O applies to each subsequent
filename until another such key word is encountered or until
the end of the OPEN statement is reached.

When you OPEN an indexed sequential file, the OPEN statement
initializes the keys to LOW-VALUES. Thus, you cannot load a
key with a value prior to opening the ISAM file and expect
the key to have the value you specify.

The NO REWIND option has meaning only for magtape files and
is ignored for all other devices. 1If the NO REWIND clause is
not specified for a tape file, the tape 1is rewound to the
beginning of the tape.

If a file has been described with LABEL RECORDS ARE STANDARD,
standard 1label checking or label writing is performed. If a
file has been described as LABEL RECORDS ARE OMITTED, no
label checking or writing is performed.

If an INPUT file 1is described as OPTIONAL (in the
FILE-CONTROL paragraph), the object-time system types the
message

IS file—name PRESENT?

and wait for the operator to type YES or NO. If he types NO,
the first READ statement for this file causes the
imperative-statement at the AT END or INVALID KEY c¢lause to
be executed.

5-61 October 1985

THE PROCEDURE DIVISION

OPEN (Cont.)

11.

12.

13.

14.

15.

16.

17.

The I-0 or INPUT-OUTPUT options permit the opening of a file
on a random-access device for both input and output
processing. When the I-O option is specified, the execution
of the OPEN statement causes the standard beginning label
procedures to be executed. The file must exist when it is
opened for INPUT-OUTPUT.

A file is opened for simultaneous update 1if the ALLOWING
OTHERS clause is present in the OPEN statement. It must be
opened in I-O mode and cannot have a recording mode of V
(variable-length EBCDIC).

RMS indexed files cannot be opened for simultaneous updates.
Therefore, the ALLOWING OTHERS clause cannot be used.

If you open a file for simultaneous update, all subsequent
users of the file must also open it for simultaneous update
or for input only. If the file 1is currently open for
simultaneous update, any subsequent users attempting to open
the file for output or I-O are denied access to the file. If
you open the file for output or I-O only and subsequent users
attempt to open that file for simultaneous wupdate, the
simultaneous update users are denied access to the file until
you close it.

After the keyword FOR, you must give one or more verbs that
you intend to execute while you have your file open. You can
only execute those verbs that you have specified. Following
the keywords ALLOWING OTHERS, you must give one or more verbs
that you are allowing other users to execute when they open
the file. You can also specify that others not be allowed to
execute any verbs when they open the file. Specification of
ANY VERB means that all verbs 1legal for the file are
permissible. If the ALLOWING OTHERS clause is not present,
the file is not opened for simultaneous update.

Once you have opened at least one file for simultaneous
update, you cannot open any other files for simultaneous
update until all files you previously opened for simultaneous

update are closed. Thus, all files that must be open
concurrently for simultaneous update must be opened in the
same OPEN statement. However, files that are not to be

opened for simultaneous update can be opened at any time.

Files can be opened for INPUT, OUPUT, and just INPUT-OUTPUT
(that 1is, not for simultaneous update) in the same OPEN
statement as files opened for simultaneous update.

THE PROCEDURE DIVISION

OPEN (Cont.)

21. The REVERSED option may be used only on TU45 and TU70 tape
drives. If you specify this option for a file, the file will
be opened and the tape positioned at the end of the file. A
READ statement will cause the final block of the file to be
read by the monitor. The record which is actually made
available to you is the first record of the last block, which
might not be the last record. For example, 1if you have
specified a blocking factor of 2, the record made available
by the READ statement will be the next to last record in the
file, not the 1last -one. To be sure that you are actually
reading the last record in the file, you should specify a
blocking factor of 1.

Examples
OPEN INPUT INFIL.

OPEN I-O TRANSACTION FOR READ AND WRITE,
ALLOWING OTHERS READ AND WRITE.

OPEN OUTPUT LOG, LIST,
INPUT-OUTPUT MASTER FOR READ AND REWRITE,
OTHERS ANY
DET FOR READ,
OTHERS READ AND WRITE,
ACCOUNT FOR ANY
OTHERS NONE,
INPUT DAILY WITH NO REWIND.

5-63 January 1980

THE PROCEDURE DIVISION

PERFORM

5.9.26 PERFORM

Function
The PERFORM statement is used to depart from the normal sequence of

execution in order to execute one or more procedures and then return
control to the normal sequence.

General Format

THRU

THROUGH
THRU

PERFORM procedure-name-1 {$HE8UGH } procedure-name-2

. . THROUGH) o {identifier-l }
PERFORM procedure-name-1 {THRU } procedure-name-2 Jinteger-1 TIMES
PERFORM procedure-name-1 { IHROUGH } procedure-name-2 UNTIL condition-1

PERFORM procedure-name- 1[procedure-name-2

; e identifier-3
VARYING }gjgijg;igji} FROM {1ndex-name-2
Titeral-1

identifier-4 L
BY {1itera1-3 } UNTIL condition-1
. ey identifier-6
identifier-5 ;
AFTER <.l dex-name-3(LROM |pdex-name—4§
literal-3

literal-4 UNTIL condition-2

identifier-9
FROM index-name-6
literal-5

identifier- 7}

literal-6

identifier-8
[m {mdex name-5

Jdentifier- 10} UNTIL condition-?j

THE PROCEDURE DIVISION

PERFORM (Cont.)

Technical Notes

1.

Each procedure-name is the name of a section or paragraph in
the Procedure Division. Each identifier must refer to a
numeric elementary item described in the Data Division. Each
literal must be either a numeric literal or the figurative
constant ZERO.

When the PERFORM statement is executed, control is
transferred to the first statement of procedure-name-l. An
automatic return to the statement following the PERFORM
statement is established as follows. The procedures executed
constitute the range of the PERFORM.

a. If procedure-name-1 is a paragraph-name and
procedure-name-2 is not specified, the return is after
the last statement of procedure-name-l.

b. If procedure-name-1 is a section-=-name and
procedure-name-2 is not specified, the return is after
the last statement in the last paragraph in
procedure-name-1.

c. If procedure-name-2 is a paragraph-name, the return is
after the last statement in that paragraph.:

d. If procedure-name-2 is a section-name, the return |is
after the 1last statement in the last paragraph of that
section.

There is no relationship between procedure-~name-1 and
procedure-name-2, except that the sequence of operations
beginning at procedure-name-1 must eventually end with the
execution of procedure-name-2 in order to effect the return
at the end of procedure-name-2, Any number of GO TO and/or
PERFORM statements may occur between procedure-name-1 and
procedure—-name-2.

If control passes to these procedures by means other than a
PERFORM statement, control passes through the return point to
the following statement as though no return mechanism were
present.

No PERFORM statement may terminate until all PERFORM
statements that it has executed have terminated. A PERFORM
statement may be executed which terminates at the same
procedure-name as another active PERFORM.

Format 1 causes the PERFORM range to be executed once,
followed by a return to the statement immediately following
the PERFORM.

THE PROCEDURE DIVISION

PERFORM(Cont.)

7.

Format 2 causes the PERFORM range to be executed the number
of times specified by identifier~l1l or integer-1. The value
of identifier-1 or integer-1 must not be negative; it may be
zero. Once the PERFORM statement has been initialized, any
modification to the contents of identifier-1 has no effect on
the number of times the range is executed.

Format 3 causes the PERFORM range to be executed until the
condition specified in the UNTIL clause is true. 1If chis
condition is true at the time the PERFORM statement is
initialized, the range is not executed. Conditions are
explained in Section 5.5, Conditional Expressions.

Format 4 is used to augment the value of one or more
identifiers during the execution of a PERFORM statement. In
format 4, when only one identifier is varied, identifier-1 is
set equal to identifier-2 or 1literal-2 when the PERFORM
statement is initialized. If the <condition specified is
determined to be false at this point, the PERFORM range is
executed once. Then the value of identifier-1 is augmented
by identifier-3 or literal-3 and the rest of the condition is
done again. This cycle continues until condition-1 is true;
at this point, control passes to the statement following the
PERFORM statement. If condition-l is true at the beginning
of the execution of the PERFORM, control immediately passes
to the statement following the PERFORM.

The flow chart in Figure 5-3 illustrates the 1logic of the
PERFORM cycle when two identifiers are varied.

ENTRANCE

Set identifier-2 and identifier-5
to current FROM values

T

Condition-1 rue - Exit

J' False
Condition2) True
v
Execute procedure-name-1 Set identifier-b to its
THRU procedure-name-2 current FROM value
Augment identifier-5 with Augment identifier-2 with
current BY value current BY value

MR.-5.028-79

Figure 5-3 PERFORM Cycle Logic - Two Variables

THE PROCEDURE DIVISION

PERFORM (Cont.)

The flow chart in Figure 5-4 illustrates the logic of the PERFORM
cycle when three identifiers are varied.

ENTRANCE

Set
identifier-2, identifier-5, identifier-8
to current FROM values

Condition-1 True » Exit
True
Condition-2
Condition-3 True
Execute Set Set
procedure-name-1 identifier-8 identifier-b
THRU procedure- to its current] to its current
name-2 FROM value FROM value
Augment Augment Augment
- identifier-8 identifier-5 identifier-2
with current with current with current
BY value BY value BY value
']
J MR-S-069-79

Figure 5-4 PERFORM Cycle Logic - Three Variables

10. When a procedure-name in a segment with a priority number
greater than 49 is referred to by a PERFORM statement
contained in a segment with a different priority number, the
segment referred to is made available in its initial state
(that is, with all alterable GO TOs set to their initial
setting) for each execution of the PERFORM statement.

11. A PERFORM statement in a section not in the DECLARATIVES may
have as its range procedures wholly contained within the
DECLARATIVES; however, a PERFORM statement in a section

within the DECLARATIVES may not have any non-DECLARATIVE
procedures within its range.

12. A PERFORM statement within an INPUT or OUTPUT PROCEDURE
associated with a SORT or MERGE verb may not have within its

range any procedures outside of that INPUT or OUTPUT
PROCEDURE.

READ

5.9.27

Function

THE PROCEDURE DIVISION

READ

The READ statement makes available a logical record from an input file

and all
end-of-f

General
READ file-

ows performance of a specified imperative statement when
ile or invalid key is detected.
Format

name [NEXT] RECORD |:INTO identifier]

[AT END 1mperative-statemen{]

READ file-name RECORD [:INTO 1dentif1er:][:INVALID KEY imperative-statement:]

READ file-name RECORD [:INTO identifier:]

[:5§1 IS data-name:]

[}NVALID KEY imperative—statemen?j

Technical Notes

1.

An OPEN INPUT or OPEN I-O statement must be executed for the
file prior to execution of the first READ statement for that
file.

The AT END clause 1is valid only for those files whose
organization is SEQUENTIAL (explicitly or implicitly). For
those files, the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

The INVALID KEY clause is valid only for those files whose
access mode is RANDOM or DYNAMIC.

For files whose organization 1is RELATIVE or INDEXED, the
INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

If an end-of-file condition 1is encountered during the
execution of a READ statement for a sequential file, any
statements specified in the AT END clause are executed, and
no logical record is made available.

The logical end-of-file depends upon the type of device on
which the file resides (users of TOPS-10 should see the
Monitor Calls Manual, and users of TOPS-20 should see the
Monitor Calls Reference Manual).

After execution of the imperative-statement(s) in the AT END
clause, no further READ statements can be executed for that
file without first executing a CLOSE statement followed by an
OPEN statement for the file.

wn
]

68

THE PROCEDURE DIVISION

READ

5.9.26 READ

Function

The READ statement makes available a logical record from an input file
and allows performance of a specified imperative statement when
end-of-file or invalid key is detected.

General Format

READ file-name [NEXT] RECORD I:INTO 1dentifier]

[AT END 1mperative—statemen{]

READ file-name RECORD ‘:INTO identifier:]l:INVALID KEY 1mperative-statemen{j

READ file-name RECORD [:INTO 1dentifier:]

[}gj IS data—namg]

[:INVALID KEY imperative—statement:]

MR-S-1338-81

Technical Notes

1.

An OPEN INPUT or OPEN I-O statement must be executed for the
file prior to execution of the first READ statement for that
file.

The AT END clause is wvalid only for those files whose
organization is SEQUENTIAL (explicitly or implicitly). For
those files, the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

The READ statement can be executed after the AT END condition
occurs. However, the AT END path is taken again and FILE
STATUS of 16 is set.,

The INVALID KEY clause is valid only for those files whose
access mode is RANDOM or DYNAMIC,

For files whose organization is RELATIVE or INDEXED, the
INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name,

If an end-of-file condition 1is encountered during the
execution of a READ statement for a sequential file, any
statements specified in the AT END clause are executed, and
no logical record is made available.

The logical end-of-file depends upon the type of device on
which the file resides (users of TOPS-19 should see the
Monitor Calls Manual, and users of TOPS-28 should see the
Monitor Calls Reference Manual).

5-69 October 1985

THE PROCEDURE DIVISION

READ (Cont.)

After execution of the imperative-statement(s) in the AT END
clause, no further READ statements can be executed for that
file without first executing a CLOSE statement followed by an
OPEN statement for the file.

When a READ statement is executed for a file whose
organization is RELATIVE, the object-time system makes
available the record whose relative record number is equal to
the contents of the data item named in the RELATIVE KEY
phrase. If no such record exists, the INVALID KEY statements
are executed and no record is made available., For relative
files whose access mode is DYNAMIC, the NEXT phrase must be
specified 1if you wish to read the file sequentially. 1If you
specify the NEXT phrase the record made available is the next
logical record after the one most recently read, unless there
has not been a READ statement since the last OPEN or START
statement. If this is the case, the record made available is
the first record, in the case of OPEN, or the record
specified in the START statement, depending upon whether the
EQUAL, GREATER THAN, or NOT LESS THAN option is used.

When a READ statement 1is executed for a file whose
organization is INDEXED, a search of the file is made to find
the record that has a key equal to the contents of the RECORD
KEY associated with the file., If that record is found, it is
moved to the record area for the file; if it 1is not found,
the statements associated with the INVALID KEY clause are
executed, and no record is made available.

When a READ NEXT statement is executed for a file whose
organization is INDEXED, the next record available on the
indicated key field logical path 1is made available. The
logical key path 1is used regardless of intervening WRITES,
REWRITES, DELETES, or any previous I/0 operation which caused
the INVALID KEY path to be taken., If a START statement was
the last reference to the file, the record made available is
the one specified in the START statement, or the first of the
specified range. That 1is, 1if your program contains the
following sentence:

START MYFILE KEY IS GREATER THAN MIN-KEY INVALID KEY GO
TO DISPLAY-ERROR

the record made available to vyour program is the first
logical record with a key value greater than MIN-KEY. 1If no
such record exists (that is, you have reached end-of-file),
the INVALID KEY statements are executed, and no record is
made available. 1If the file has been opened but no READ,
WRITE, REWRITE, DELETE or START statement has been executed,
the first record of the file is made available.

The NEXT clause must be specified for files in dynamic access
mode, when records are to be retrieved sequentially. The
NEXT clause causes the next logical record to be retrieved
from the file.

A READ NEXT statement, following a WRITE statement execution
with a low key, causes access of the low numbered record.

5-70 October 1985

THE PROCEDURE DIVISION

READ (Cont.)

If a file described by an OPTIONAL clause is not present, the
imperative-statement(s) in the AT END or INVALID KEY clause
is executed on the first READ for that file. Any specified
USE procedures are not performed.

If logical end-of-reel is recognized during execution of a
READ statement, the following operations are carried out,

a. The reel is rewound.

b. If the file is assigned to more than one device, the
devices are advanced. The previous reel is rewound and
the next reel is initialized.

c. The standard beginning label procedure is executed.
d. The first data record on the hew reel is made available.

If a file consists of more than one type of logical record,
these records automatically share the same storage area.
This is equivalent to an implied REDEFINE for the record
area., Only information in the current record is accessible,

If the INTO 1identifier option 1is specified, the READ
statement is then equivalent to a READ without the INTO
option, followed by a MOVE of the record area associated with
the filename to identifier.

The INTO clause can be specified in the READ statement when:

a. all records associated with the file and data-item
specified in the INTO clause are dgroup items, or
elementary alphanumeric items, or

b. only one record description is subordinate to the file
description entry.

The KEY IS data-name clause can be specified to read ISAM or
RMS records. With both record formats, the data-name must
previously be supplied a value before the read. For ISAM the
data-name refers to the RECORD KEY value. For RMS, the
data-name refers to either the primary key value (RECORD KEY
IS) or an alternate key value (ALTERNATE KEY IS). Refer to
Appendix I for additional information on reading RMS 1indexed
files.

Example:

SELECT MASTER-FILE ASSIGN TO DSK
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS MASTER-NUMBER.

.

.

PROCEDURE DIVISION,

.

MOVE 99 TO MASTER-NUMBER,
READ MASTER-FILE KEY IS MASTER-NUMBER
- INVALID KEY GO TO KEY-ERROR-ROUTINE,

5-71 October 1985

THE PROCEDURE DIVISION

RELEASE

5.9.27

Function
The RELE
sort ope

General

RELEASE re

RELEASE

ASE statement transfers records to the initial phase of the
ration.

Format

cord-name [FROM identifi er:l

MR-S-1339-81

Technical Notes

1.

A RELEASE statement can be used only in an input procedure
associated with a SORT or MERGE statement for a file whose SD
description contains record-name.

If the FROM option is used, the contents of identifier are

moved to record-name, then the contents of record-name are
released to the sort subroutines.

After the RELEASE statement 1is executed, the contents of
record-name can no longer be available.

THE PROCEDURE DIVISION

RETAIN

5.9.28 RETAIN
Function
The RETAIN statement specifies your intent to access one or more

records in an indexed or relative file that is open for simultaneous
update.

General Format

NEXT RECORD

recoro ey {{Enn s)

RETAIN file-name-1

READ [READ
REWRITE REWRITE
READ-REWRITE READ-REWRITE
FOR < DELETE AND < DELETE [UNTIL FREED]
WRITE WRITE
READ-WRITE READ-WRITE
ANY VERB ANY VERB]
NEXT RECORD
,file-name-2 RECORD [EEI {}?igilﬁlir 1}] ‘
READ READ
REWRITE REWRITE
READ-REWRITE READ-REWRITE
FOR { TDELETE AND < DELETE [UNTIL FREED]
WRITE WRITE -
READ-WRITE READ-WRITE
ANY VERB ANY VERB]
- |
[UNAVAILABLE statement-1 [,statement-2]] .

MR-S-1340-81

5-73 October 1985

THE PROCEDURE DIVISION

RETAIN (Cont.)

Technical Notes

1.

2.

3.

4.

10.

Filename-1, filename-2... must be the names of files
previously opened for simultaneous update.

Identifier-1, identifier-2... and literal-l,
literal-2... specify keys that refer to records in the file.

Statement-1, statement-2... are any valid COBOL statements.

The RETAIN statement must be given before any record Iis
accessed 1in a file opened for simultaneous update, If it is
given for a file not open for simultaneous wupdate, the
program is terminated.

The NEXT RECORD clause must be specified when you want to
retain the next record 1in the file. LOW-VALUES cannot be
moved to the RECORD KEY for a RETAIN of the next record.

The RETAIN statement does not cause any change in the record
area or any change in the positioning in the file. You must
explicitly issue I/0 statements for these changes to be
performed. Thus, the RETAIN statement does not cause an
end-of-file condition.

The action performed by any I/0 operation 1is 1logically the
same as if the file were not opened for simultaneous update.
For example, the RELATIVE KEY is examined to determine the
record to be read/written/rewritten/deleted 1in a relative
file; and the RECORD KEY is examined to determine the record
to be read/written/rewritten/deleted in an indexed-sequential
file. The only difference 1is that a check 1is made to
ascertain that the record has been retained. Thus, retaining
a record does not cause that record to become the current
record of the file. Only I/0 operations can cause a record
to become the current record of the file,

You can retain nonexistent records in a file. You can
perform a WRITE to a nonexistent record, but you will receive
an error if you attempt to perform any other I/0 operation on
these nonexistent records.

It is possible to mix requests for records from random and
indexed-sequential files in the same RETAIN statement,

Using the RETAIN for WRITE, DELETE, or ANY VERB statements

with indexed-sequential files locks the entire file, not just
the record.

5=74 October 1985

11.

12.

13.

14.

15.

16.

17.

THE PROCEDURE DIVISION

RETAIN (Cont.)

When you retain a record for READ, other wusers are also
allowed to read that record, but cannot perform any other
form of I/O on that record (WRITE, REWRITE, or DELETE). When
you retain a record for any use other than READ, all other
users are banned completely from accessing that record.

The statement included in the FOR <clause 1in the RETAIN
statement must agree with at least one statement in the FOR
clause in the OPEN statement for the file. If ANY VERB is
specified in the FOR clause in the RETAIN statement, the file
must have been explicitly opened for ANY VERB.

The record or records named in the RETAIN statement are
automatically freed upon execution of the statement or
statements (except ANY VERB) in the FOR clause of the RETAIN
statement. If you do not issue an I/O statement for the
record, or if the UNTIL FREED phrase 1is used, you must
explicitly free the record with the FREE statement. If a
record is not freed, you cannot retain any more records in
any of your files open for simultaneous update.

The UNTIL FREED phrase allows you to retain several logically
related records for processing without their being freed
automatically by the I/0O statements. Instead, the records
are retained until they are explicitly freed by means of the
FREE statement.

The KEY phrase allows you to specify a particular record or
to specify more than one record in a file.

All records to be retained concurrently, whether in one or
several files, must be retained in the same RETAIN statement.
Once records in any file have been retained, no other records
in any open file can be retained until the currently retained
records have all been freed. This rule prevents a deadly
embrace situation.

NOTE

Deadly embrace occurs when two users
make conflicting demands upon a file
resource and neither is willing or able
to yield to the other. The result is
that both programs hang or stall waiting
for the resource to become available.

When attempting to retain records, the program is suspended
if any one of the records is not available. If you wish the
program to perform other processing, rather than be
suspended, you can include an UNAVAILABLE phrase in the
RETAIN statement. Any valid COBOL statement can be used in
the UNAVAILABLE phrase.

THE PROCEDURE DIVISION
RETAIN (Cont.)

18. Use of the RETAIN statement differs according to the
organlzation of the file. Each type of file is described
separately below.

5-76 October 1985

THE PROCEDURE DIVISION

RETAIN (Cont.)

19, Relative files

- 1%

Records in a relative file can be retained only for READ,
WRITE, READ-REWRITE, REWRITE, DELETE, or ANY VERB. For
relative files, ANY VERB means READ, WRITE, READ-REWRITE,
DELETE, and REWRITE.

When the KEY phrase is specified, the value of the key
designates a specific record in the file, just as the
RELATIVE KEY of the file does. Thus, record 1 is always
the first record 1in the file, If you specify the NEXT
option, however, the record retained is the next
sequential record 1in the file, The next record in the
file depends on the last I/0 operation performed (READ,
REWRITE, DELETE or WRITE) and the I/0 operation for which
the record is to be retained. If the last record was
written, the next record to be retained for READ, WRITE,
DELETE, or READ-REWRITE 1is defined to be the one
following the record just written. Similarly, if the
last record was read, the next record to be retained for
READ or DELETE 1is defined to be the one following the
record Jjust read. However, the next record to be
retained for REWRITE 1is defined to be the record just
read. Note that the next record actually read or written
depends on the value of the RELATIVE KEY, not on the
record specified in the RETAIN statement,

If you wish to read/rewrite the file sequentially, vyou
should select the NEXT option in the RETAIN statement,
and use the READ NEXT syntax so that you are performing
I/0 on the same records that you are retaining. If you
wish to read/rewrite the file randomly, you should set
the RELATIVE KEY to the desired record and either use the
same value in the KEY in the RETAIN statement or wuse no
KEY value in the RETAIN statement.

If the KEY phrase is not specified, the value used for
the key is taken from the RELATIVE KEY specified for the
file.

The value of a key can be specified by any identifier.
The identifier must be numeric, and can be subscripted or
qualified or both., For the sake of efficiency, its USAGE
should be COMPUTATIONAL or INDEX. The value of the key
can also be specified by a positive integer numeric
literal containing ten or fewer digits.

5=-77 » October 1985

THE PROCEDURE DIVISION

RETAIN (Cont.)

Example

20.

OPEN I-O PART FOR READ AND REWRITE ALLOWING OTHERS
NONE.

MOVE 64 TO PART-ACTUAL-KEY

RETAIN PART FOR READ.

READ PART, INVALID KEY GO TO ERR.

3
.

RETAIN PART NEXT FOR REWRITE,

PART KEY 35 FOR READ AND REWRITE.
REWRITE PARTREC.
MOVE 35 TO PART-ACTUAL-KEY.
READ PART, INVALID KEY GO TO ERR.
REWRITE PARTREC.

Indexed-sequential files

Qe

Records in an indexed~sequential file can be retained for
READ, WRITE, REWRITE, DELETE, READ-REWRITE, and ANY VERB.
For indexed-sequential files, ANY VERB means READ, WRITE,
REWRITE, and DELETE.

When RETAIN FOR DELETE, WRITE, or ANY VERB 1is specified
for an indexed-sequential file, the entire file, rather
than just the block, is locked for simultaneous update.

When the KEY phrase is specified, the value of the key
refers to a specific record in the file, just as the
RECORD KEY does.

The value specified in the KEY phrase must normally be an
identifier that specifies a field that agrees with the
RECORD KEY defined for the file in size, class, usage,
and number of decimal places. However, if the RECORD KEY
of the file is numeric, a positive numeric literal of ten
or fewer digits can be wused as the value in the KEY
phrase. For the sake of efficiency the key should be
USAGE COMPUTATIONAL or INDEX.

If the KEY phrase is not specified, the value used for
the key 1is taken from the current RECORD KEY for the
file,

If NEXT 1is specified, the record retained 1is that
following the last record referenced in the same RETAIN
statement or by a READ, WRITE, REWRITE, or DELETE
statement.

Example

OPEN I-O LETTERS FOR READ ALLOWING OTHERS READ AND
REWRITE.

MOVE "B" TO RECORD KEY.

RETAIN LETTERS FOR READ.

READ LETTERS INVALID KEY GO TO ERRS.

5-78 October 1985

THE PROCEDURE DIVISION

REWRITE

5.9.31 REWRITE

Function

The REWRITE statement replaces an already existing record in a file.

General Format

REWRITE record-name [FROM identifier] [INVALID KEY 1mperative-statementj]

Technical Notes

1.

Sequential files and files with sequential access
a. The file must be open for INPUT-OUTPUT.
b. The last file operation must have been a successful READ.

c. The record that is replaced is the record that was just
read.

d. The INVALID KEY clause must not be specified.

Indexed and relative files (dynamic or random access)
a. The file must be open for INPUT-OUTPUT.

b. The record that is replaced is the record indicated by
the current value of the record (indexed) or RELATIVE
(relative) KEY.

c. The INVALID KEY clause is required if no USE procedure
has been specified.

d. The INVALID KEY clause is executed if no record exists
corresponding to the current value of the key or if the
current value of the RELATIVE KEY (for relative files) is
either zero or a negative number.

If the FROM option is used, the statement is equivalent to:

MOVE identifier TO record-name
REWRITE record-name (without the FROM option)

The INVALID KEY phrase must not be specified for a REWRITE
statement that references a file in seguential mode. This is
because a REWRITE may only be done on a file in
sequential-access mode after a successful READ statement is
executed.

The INVALID KEY phrase must be specified in the REWRITE

statement for files in the random- or dynamic-access mode for
which an appropriate USE procedure is not specified.

5~-79 January 1980

SEARCH

5.9.32

Function

THE PROCEDURE DIVISION

SEARCH

The SEARCH statement is used to search a table until a specified
condition exists.

General Format

SEARCH identifier-1 [:VARYING {
WHEN condition-1 {

['NHEN condition-2 {

SEARCH ALL

=
T

=

identifier-2

index-name-1 {] [AT END imperative-statement-1"]

imperative-statement-2 }
NEXT SENTENCE

imperative-statement-3 }
NEXT SENTENCE Tt

identifier-1 [AT END imperative—statement-l]

identifier-3
‘data-name-l {%g EQEAL TO} {1itera1-1 })
arithmetic-expression-1

$

(condition-name—l

‘data—name-z {IS EQUAL TO} identifier-4)
AND Is = Titeral-2
(Condition-name-2 arithmetic-expression-2 ‘

{ imperative-statement-Z}
NEXT SENTENCE

Technical Notes

1.

If any of the optional clauses are present, they must appear
in the order shown.

Identifier-1 must not be subscripted or indexed, but its
description must contain an OCCURS clause with an INDEXED BY
option. In format 2, identifier-1 must also contain a KEY
option in its OCCURS clause.

Identifier-2 must be an index, or an elementary numeric item
with no places to the right of the decimal point.

THE PROCEDURE DIVISION
SEARCH (Cont.)

In format 1, condition-1, condition-2, etc., can be any
condition described in Section 5.5.

In format 2, condition-1 must consist of a relation condition
incorporating the EQUAL TO or equal sign, or a condition-name
condition where the VALUE clause contains only a single
literal, or a compound condition consisting of two or more
such simple conditions connected by AND. '

A data-name that appears in the KEY clause of identifier-1
must appear as the subject or object of a test, or be the
name of the data-item with which the tested condition-name is
associated. However, all preceding data-names in the KEY
clause must also be included within condition-l.

If the AT END clause is not present, AT END NEXT SENTENCE is
assumed.

If the VARYING option 1is not specified, the first index
specified in the INDEXED BY option for identifier-1 is used.

If the VARYING option is used and identifier-2 is the name of
an item specified in the INDEXED BY option for identifier-1,
then identifier-2 is used as the index. If identifier-2 is
not specified in the INDEXED BY option for identifier-1, the
first index-name in the INDEXED BY option is wused as the
index, and identifier-2 will contain the value of the index
at each step of the search.

If format 1 of the SEARCH verb is wused, a serial type of
search takes place, starting with the current index setting.

If, at the start of execution of the SEARCH statement, the
index contains a value that is not positive or is greater
than allowed (greater than the number of occurrences or
greater than any DEPENDING item), the statement (s) specified
in the AT END statement is executed.

If, at the start of execution of the SEARCH statement, the
index is within the allowed range of values, the WHEN
conditions are evaluated one at a time. If any condition is
true, the associated statement(s) 1is executed. If no
condition is true, the index is incremented by 1, and the
search operation is executed again.

The contents of the index are always left as they were when
the search is terminated, either by a WHEN condition, or the
AT END condition.

If format 2 of the SEARCH verb is used, a binary search takes
place. All the keys in the table must be in order (ascending
or descending) and all the elements in the table must be
filled. It is up to you to ensure that the keys associated
with the table are in order and the table filled. If the
keys are not in order, or if there are empty elements in the
table being searched, the SEARCH may take the AT END path
even if the key being searched for is there. If the table is
not going to be filled, using the DEPENDING ON clause with
OCCURS effectively shortens the table.

THE PROCEDURE DIVISION

SEARCH (Cont.)

The initial contents of the index are ignored; instead, the
table 1is examined until the WHEN condition is satisfied (in
which case statement-3 and any following statements are
executed) or until the entire table is examined (in which
case the AT END statement(s) is executed).

When the search is terminated, the contents of the index
reflect the occurrence number of the entry that satisfied the
WHEN condition if it was satisfied, or is arbitrary if it was
not satisfied.

10. In either format, after any WHEN or AT END statement(s) is
executed, control is transferred to NEXT SENTENCE unless that
statement contained a GO TO.

11. 1If identifier-1 is a data item subordinate to a data item
that contains an OCCURS clause (that. is, this 1is a
multidimensional table), only the index associated with
identifier~1 is modified during the search. To search an
entire multidimensional table, the SEARCH statement must be
executed several times.

Example

01 TABLE.
02 TABL1 OCCURS 200 TIMES INDEXED BY I,
ASCENDING KEYS A, B.

03 A, PICTURE XXX.
03 FOO, PICTURE X(20).
03 B, PICTURE 9(4).

03 DES, PICTURE X (40).
03 AM, PICTURE S9(5)V99.

SEARCH ALL TABLl, AT END GO TO WHAT-HAPPENDED;
WHEN A(I) = "XYZ" AND B(I) = 350 GO TO GO-ONE.

5.9.33

Function

The SET

THE PROCEDURE DIVISION

SET

SET

statement allows a data~item to be incremented, decremented,

or set to a value.

General Format

. < s . s identifier-3
dentifier-1 [identifier-2] } { ! }
SET {T . . T0 index-name-3
index-name-1 [index-name-2] integer-1
. . UP BY 1dentifier-4}
SET index-name-4 [Jindex-name-5_] ... { oW BY } {1nteger-2
Technical Notes
1. All identifiers must be numeric elementary items described
without any positions to the right of the assumed decimal
point.
2. All literals must be integers, or the figurative constant
ZERO.
3. The SET statement causes identifier-1, identifier-2,... to

be set (TO), incremented (UP BY), or decremented (DOWN BY)
the value of identifier-3 or literal-l.

SORT

THE PROCEDURE DIVISION

5.9.34 SORT

Function

The SORT

statement creates a sort file containing the contents of one

or more files that have been ordered according to user-specified keys.

General Format

SORT

file-name-1 ON {Aiﬁﬁﬂﬂlﬂg

DESCENDING} KEY data-name-1 [data-name-2]

[éN {%%%%%%%%%G} KEY data-name-3 l:data-name-éj ..C]...

[COLLATING SEQUENCE IS alphabet-name |

THROUGH

INPUT PROCEDURE IS section-name-1 [{

THRU } section-name-ZJ

USING file-name-2 [fi]e—name-j]

QUTPUT PROCEDURE IS section-name-3 [{Iﬂﬂgﬁﬁﬂ} section-name-%}

THRU

GIVING file-name-4)

Technical Notes

1.

File-name-1 must be described in an SD file description entry
in the Data Division. Each data-name must represent data
items described in records associated with file-name-1.

File-name-2, file-name-3, and file-name-4 must be described
in an FD file description. All records associated with these
files must be large enough to contain all of the KEY
data-names. You can use any number of input files with a
SORT statement.

The data-names following the word KEY are listed in order of
decreasing significance without regard to how they are
organized in the SD record description.

The data-names may be qualified but not subscripted.
SORT statements may appear anywhere in the Procedure Division
except in the DECLARATIVES portion or in an input or output

procedure associated with a sort, or an output procedure
associated with a merge.

5-84 January 1980

10.

11.

12.

THE PROCEDURE DIVISION

SORT (Cont.)

When the ASCENDING clause is used, the sorted sequence is
from the lowest value to the highest value; when a
DESCENDING clause is used, the sorted sequence 1is from the
highest value to the lowest value.

The input procedure, if present, must consist of one or more
sections or paragraphs that appear contiguously in the
program and do not form a part of any output procedure. The
input procedure must contain at least one RELEASE statement
in order to transfer records to the sort subroutine.

The output procedure, if present, must consist of one or more
sections or paragraphs that appear contiguously in a source
program and do not form a part of any input procedure. The
output procedure must contain at least one RETURN statement
in order to make sorted records available for processing.

ALTER, GO and PERFORM statements in the input procedure are
not permitted to refer to procedure-names outside the input
procedure; similarly, ALTER, GO and PERFORM statements in
the output procedure are not permitted to refer to
procedure-names outside the output procedure.

If an input or output procedure is specified, those
procedures are PERFORMED by the SORT statement, and all rules
relating to the range of a PERFORM must be observed.

If the USING option is specified, all records in file-name-2,
file-name-3,..., are automatically transferred to the SORT
subroutine. File-name~2, file-name-3,..., must not be open
when the SORT statement is executed. Any USE PROCEDURESs
associated with file-name-2, file-name-3,..., will be
executed as appropriate. The USING option is equivalent to
the following INPUT PROCEDURE:

L1. OPEN INPUT file-name-2

L2. READ file-name-2 INTO sort-record; AT END GO TO
L3. RELEASE sort-record.
GO TO L2.

L3. CLOSE file-name-2.

If the GIVING option is specified, all the sorted records in
file-name-1 are automatically transferred to file-name-4.
File-name-4 must not be open when the SORT statement is
executed. Any USE PROCEDURES associated with file-name-4
will be executed as appropriate. The GIVING option is
equivalent to the following OUTPUT PROCEDURE:

L4. OPEN OUTPUT file-name-4.

L5. RETURN sort-file INTO record-name-4; AT END GO TO L6.

WRITE record-name-4.
GO TO L5.
L6. CLOSE file-name-4.

5-85 January 1980

THE PROCEDURE DIVISION

SORT (Cont.)

13.

14.

15.

An ISAM file cannot be sorted directly using the non-COBOL
standalone SORT.

ISAM files are by definition a sorted set. 1In designing the
file you should use the order in which the file will be most
often accessed. If you wish to access it in a different
order, write a program with an input procedure that reads the
ISAM file. The input procedure can release records to the
sort. You can read the file in two ways - sequentially using
READ NEXT, or randomly by selecting the desired record and
inserting the key value in the RECORD KEY. Usually, reading
the file sequentially and allowing SORT to order the records
is much faster. 1If you wish to use an ISAM file as output,
you must have an empty ISAM file for output, return records
from the sort and write them into the new ISAM file.

The collating sequence used to compare the specified
alphabetic data items is determined in the following order:

a. SORT first looks at the collating sequence defined in the
COLLATING SEQUENCE phrase in the SORT statement.

b. If the COLLATING SEQUENCE phrase was not specified, SORT
uses the «collating sequence defined in the PROGRAM
COLLATING SEQUENCE of the OBJECT-COMPUTER paragraph.

c. If neither of the above two phrases have been specified,
SORT uses the normal collating sequence. For example,
SORT would use ASCII for ASCII items and EBCDIC for
EBCDIC items.

Refer to the SORT User's Guide for more information on SORT.

5-86 January 1980

5.9.35

Function

THE PROCEDURE DIVISION

START

START

The START statement provides for logical positioning within a relative
or indexed file, for subsequent sequential retrieval of records.

General Format

START file-name | KEY

IS EQUAL TO

IS GREATER THAN data-name

NOT LESS THAN
IS NOT ¢

[INVALID KEY 1mperative-statement]

Technical Rules

File-name must be the name of a file with sequential or
dynamic access.

Data-name may be qualified.

The INVALID KEY phrase must be the data item specified if no
applicable USE procedure is specified for file-name.

The file associated with file-name must be open in the INPUT
or I-0 mode at the time the START statement is executed.

If you omit the KEY phrase, you imply the phrase IS EQUAL TO
data-name, where data-name refers to the RECORD KEY of an
indexed file or the RELATIVE KEY of a relative file.

If the file associated with file-name is a relative file, and
you include data-name, data-name must be the data item
specified in the RELATIVE KEY phrase of the file control
entry. If the file is an indexed one and you include
data-name, data-name must be either the data item specified
as the record key, or an "approximate key". An "approximate
key" is a part of a key, whose leftmost character position is
the same position as the leftmost position of the RECORD KEY
but which is not the entire key. Suppose, for example, you
have an ISAM file whose key is of the form

YY-MM-DD-XX

THE PROCEDURE DIVISION

START (Cont.)

where YY is the year, MM the month, DD the day, and XX the
charge sequence number. If you wished to begin processing
the file at the first record of July 1978, you could write
the following code:

SELECT CHARGE-FILE
ASSIGN TO DSK
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CHG-REC-KEY.

MOVE "78-07-" TO CHG-REC-KEY.
START CHARGE-FILE KEY IS GREATER THAN CHG-REC-KEY,
INVALID KEY GO TO ERR-RTN.

The effect of this would be to find the first record in the
file whose key collates higher than 78-07- and then position
the record pointer in front of that record. If you specified
NOT LESS THAN instead of GREATER THAN the pointer would be
positioned in front of the record whose key is 78-07-AAAAA if
such a record existed; otherwise the pointer would be
positioned as in the actual example. Note that only indexed
files may use the "approximate key", and that the leftmost
positions of the record key and the "approximate key" must be
the same character position in the record, not simply contain
the same character.

If the comparison is not satisfied by any record in the file,
the INVALID KEY condition exists, the execution of the START
statement is unsuccessful, and your logical position in the
file is undefined. When this is the case, the
imperative-statements following the INVALID KEY phrase are
executed.

The execution of the START statement causes the value of the
FILE STATUS data item, if any, associated with file-name to
be updated.

5.9.36

Function

THE PROCEDURE DIVISION

STOP

STOP

The STOP statement halts the object program.

General Format

RUN
STOP {11tera1}

Technical Notes

1.

The literal may be numeric or nonnumeric or may be any
figurative constant except ALL.

If the literal is numeric, it must be an unsigned integer.
If the literal option is used, the literal is displayed on
the user's terminal. The literal may be a figurative

constant; in this case, a single character 1is displayed.
The program waits for the operator to type

CONTINUE

Following receipt of this message, the program continues
execution at the statement following the STOP.

If the RUN option is wused, all files currently open are
closed, and execution of the program is terminated.

STRING

5.9.37

Function

THE PROCEDURE DIVISION

STRING

The STRING statement is used to concatenate the pgrtial or complete
contents of several data items into a single data item.

General Format

. . . e o] ‘identifier—3'
identifier-1 identifier-2 -
- ... Y Titeral-3
STRING {1itera1-1 } literal-2 DELIMITED B lSIZEr ;
. . es . s] identifier-6
identifier-41% | identifier-5| pr) ywiTep BY {literal-6
literal-4 literal-5 _—
L . SIZE
INTO identifier-7 [wITH POINTER identifier-sj
[ON VERFLOW imperative-statement]
Technical Notes
1. Source Items

a. The data items referenced by identifier-1,
identifier-2,... are called source data items.

b. A numeric source item is moved (according to the rules
for numeric transfers) to an intermediate unsigned
numeric data item of the same size as the source whose
USAGE is the same as that of identifier-7 , and then it
is treated as alphanumeric.

c. If subscripting or indexing is needed to identify a
source data item, the values of the required subscripts
and/or indexes and the depending items, if any, just
prior to the transfer of that particular source item are
used.

d. Literal-l; 1literal-2... are called source 1literals.
Source literals must be alphanumeric literals or
alphanumeric figurative constants without the ALL
modifier.

e. If a source literal is a figurative constant, it refers

to a single-character literal of the specified type.

THE PROCEDURE DIVISION

STRING (Cont.)

Delimiter Items

a.

h.

Each series of source 1items specified in the STRING
statement must be followed by a DELIMITED BY phrase.
This phrase specifies the delimiter condition to be
associated with each source item in that series.

The data items referenced by identifier-3 and
identifier-6 are called delimiter data items.

A numeric delimiter item is moved (according to the rules
for numeric transfers) to an intermediate unsigned
numeric data item of the same size as the delimiter whose
USAGE is the same as that of identifier-7 and then
treated as alphanumeric.

If subscripting or indexing is needed to identify a
delimiter data item, the values of the required
subscripts and/or indexes and the depending items, if
any, Jjust prior to the transfer of the source item
corresponding to that particular delimiter item are used.

Literal-3 and literal-6 are called delimiter 1literals.
Delimiter 1literals must be alphanumeric 1literals or
alphanumeric figurative constants without the ALL
modifier.

If a delimiter literal 1is a figurative constant, it
refers to a single-character 1literal of the specified
type.

If a delimiter data item or a delimiter 1literal 1is
specified, either the content of the data item during the
execution of the STRING statement or the value of the
literal 1is the delimiter string for each source item
corresponding to that delimiter itenm.

In this case, the delimiter condition for each of the
corresponding source items is the first occurrence in the
source item of a character string that matches the
delimiter string. If there is not such character string
in the source item, the delimiter condition 1is the
rightmost boundary of that source item.

NOTE

Two character strings match if, and only if, they
are of equal 1length and each character of the
first string 1is equivalent, according to the
rules for code conversion, to the corresponding
character of the second string.

If the DELIMITED BY SIZE phrase is specified, the only
delimiter condition for each of the corrsponding source
items is the rightmost boundary of the source item.

STRING (Cont.)

3.

THE PROCEDURE DIVISION

Destination

a.

The data item referenced by identifier-7 1is called the
destination. The destination must be an unedited
alphanumeric data item. It cannot be justified (that is,
the JUSTIFIED clause cannot be used for this item).

If subscripting or indexing is needed to identify the
destination, the values of the required subscripts and/or
indexes and the depending items, if any, just prior to
the execution of the STRING statement are used.

Pointer

a.

The data item referenced by identifier-8 is called the
pointer. The pointer must be an unedited integer data
item of sufficient size to contain a value one greater
that the size of the destination.

The pointer serves as a character index for the
destination.

If subscripting or indexing is needed to identify the
pointer, the values of the required subscripts and/or
indexes and the depending items, if any, prior to the
execution of the STRING statement are used.

If the POINTER phrase is specified, the pointer is
directly available to you. It must be initialized before
the execution of the STRING statement to a value greater
than zero and not greater than the size of the
destination.

If the POINTER phrase is not specified, the STRING
statement is always executed as if you have specified a
pointer and set the initial value to 1. In this case,
the pointer is not directly available to you.

The STRING statement is executed as if the initial value
of the pointer were stored in a temporary location. This
temporary location is used as the pointer during the
execution of the STRING statement. The value in this
temporary location is stored in the real pointer item
before any subscripting 1is done and at the end of
execution of the STRING statement.

Execution

a.

When the STRING statement is executed, each source item
in turn, starting with the first source item specified,
is transferred to the destination character by character,
beginning at the leftmost character position of the
source item and continuing to the right, until the
delimiter condition corresponding to that source item has
been encountered or the destination has been filled.

THE PROCEDURE DIVISION

STRING (Cont.)

If a delimiter item was specified for a source item and a
string of characters is found in the source item matching
the delimiter string, all characters of the source item
preceding the matching string are used in the transfer to
the destination, but none of the characters that are 1in
the matching string and no characters following it in the
source item are used in the transfer.

If no delimiter item was specified for a source item or
no string of characters is found in the source item
matching the delimiter string, all characters of the
source item are used in the transfer to the destination.

During the execution of the STRING statement, characters
are transferred to the destination from the source items
as if the destination were a table of single-character
data items indexed by the pointer, which is automatically
incremented after each character transfer.

The first character transferred is stored in the
character position of the destination indicated by the
initial value of the ©pointer. The nth character
transferred is stored in the character position indicated
by the initial value of the pointer plus n-1.

The transfer of characters ends when one of the following
conditions occur. These conditions are specifically
checked for in the order stated.

1. The initial value of the pointer is not a positive
integer less than or equal to the size of the
destination.

2. All appropriate characters of all source items have
been transferred to the destination.

3. A character has been transferred to the last
character position of the destination, though not all
appropriate characters of all source items have been
transferred.

If the transfer of characters to the destination is
terminated because of condition 2 of note f, those
character positions of the destination to which
characters were not transferred, if any, will retain the
values they contained before the execution of the STRING
statement. That is, remaining character positions in the
destination are not space-filled.

After the transfer of characters to the destination has
ended, the pointer is set to a value one greater than the
ordinal number of the last character position of the
destination to which data was transferred. 1If no data
was transferred to the destination, the pointer is
unchanged.

5-93 January 1980

THE PROCEDURE DIVISION

STRING (Cont.)

6.

Overflow

a.

The STRING statement is considered to have caused an
overflow if the transfer of characters to the destination
is terminated because of either of the <conditions shown
below:

1. The initial value of the pointer is not a positive
integer 1less than or -equal to the size of the
destination.

2. A character has been transferred to the last
character position of the destination, though not all
appropriate characters of all source items have been
transferred.

If the ON OVERFLOW phrase is not specified, after the
execution of the STRING statement, regardless of whether
or not there was an overflow, control passes to the point
in the program immediately following the STRING
statement.

If the ON OVERFLOW phrase 1is specified, after the
transfer of characters has ended and the pointer has been
set to the appropriate value, the flow of control of the
program depends on whether or not there was an overflow.

1. If an overflow did not occur, control passes to the
point in the program corresponding to the end of the
sentence containing the STRING statement (following
all the statements in the ON OVERFLOW phrase).

2. If an overflow did occur, control passes to the point

in the program corresponding to the beginning of
statement-1.

5-94 January 1980

THE PROCEDURE DIVISION

SUBTRACT

5.9.38 SUBTRACT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric items from one or more numeric items and set the values
of one or more items to the result.

General Format

identifier-1 identifier-2 . :es
SUBTRACT {Htera1-1 } |:11'tera1-2 :| ... [EROM identifier-m [ROUNDED]
l:identifier—n [ROUNDED]:I ... [N SIZE ERROR imperative-statement |
identifier-1 identifier-2 identifier-m
SURTRACT {1itera1-1 } [:literal-z :] --- EROM {11tera1-m }

GIVING identifier-n [ROUNDED:I |:1'dent1’f1'er‘-o I:ROUNDED:]]

[on

SUBTRACT {
—_—

[[on

SIZE error 1mperative-statement]

CORRESPONDING

CORR } identifier-1 FROM identifier-2 [ROUNDED]

SIZE ERROR imperative-statement]

Technical Notes

1.

Each SUBTRACT statement must contain at 1least two operands
(that 1is, a subtrahend and a minuend). In formats 1 and 2,
each identifier must refer to an elementary numeric item,
except that identifiers to the right of the word GIVING may
refer to numeric edited items. 1In format 3, each identifier
must refer to a group item.

Each literal must be a numeric 1literal or the figurative
constant ZERO.

The composite of all operands (that 1is, the data item
resulting from the superimposition of all operands aligned by
decimal point) must not contain more than 18 decimal digits
for the standard compiler and not more than 36 digits for the
BIS-compiler. 1In either case, a maximum of 18 digits can be
stored in the receiving field. (See Section 1.1 for a
definition of the BIS-compiler.)

Format 1 causes the values of the operands preceding the word
FROM to be added together, and this sum to be subtracted from
the values of identifier-m, identifier-n, and so forth.

THE PROCEDURE DIVISION

SUBTRACT (Cont.)

4.

Format 2 causes the values of the operands preceding the word
FROM to be added together, the sum subtracted from
identifier-m or literal-m, and the result stored as the new
values of identifier-n, identifier-p, and so forth. The
current values of identifier-n, identifier-p, and so forth,
do not enter into the computation.

Format 3 causes the data items in the group item associated
with identifier-1 to be subtracted from and stored into
corresponding data items in the group item associated with
identifier-2. The criteria used to determine whether two
items are corresponding are described in Section 5.7, The
CORRESPONDING Option.

The ROUNDED and SIZE ERROR options are described in Section
5.6, Common Options Associated with Arithmetic Verbs.

THE PROCEDURE DIVISION

TERMINATE

5.9.39 TERMINATE

Function

The TERMINATE statement ends the processing of a report.

General Format

TERMINATE report-name-1 [:report—name-g]

Technical Notes

1.

2.

Each report-name must be defined by an RD entry in the Report
Section of the Data Division.

All control footings associated with the report are produced
as if a control break had occurred at the highest level. 1In
addition, the last PAGE FOOTING and any REPORT FOOTING report
groups are produced.

A second TERMINATE statement for a particular report may not
be executed until another INITIATE statement is executed for

that report.

The TERMINATE statement does not close the file associated
with the report; a CLOSE statement must be executed after
the TERMINATE statement is executed.

THE PROCEDURE DIVISION

TRACE

5.9.40 TRACE

Function

The TRACE statement causes COBDDT to trace paragraphs or to stop
tracing paragraphs at run time. When a paragraph is traced, its name,
enclosed in angle brackets (<>), is typed each time that the paragraph
is entered.

General Format

oN
TRACE {O_FF%

Technical Notes

1. The TRACE statement works with the COBDDT utility to help you
debug your COBOL-74 program. COBDDT must be loaded with your
program for the program to be traced. (See Section 7.3.1,
Loading and Starting COBDDT, for more information about using
COBDDT.) If COBDDT is not 1loaded, the TRACE calls are
ignored.

2. The compiler generates trace calls for each paragraph in the
program if the /P switch is not included in the command
string. If the /P switch is included in the command string,
the trace calls are not generated.

3. Although the compiler generates trace calls when the /P
switch is not present, tracing is not performed unless you
include the TRACE ON statement in the program or specify the
TRACE ON statement to COBDDT.

4. The TRACE ON statement causes all ensuing paragraphs to be
traced; that 1is, their names, enclosed in angle brackets
(<>), are typed each time they are entered. Tracing
continues until either the end of program is reached or a
TRACE OFF statement is encountered or is specified to COBDDT.

5. The TRACE OFF statement stops tracing of all ensuing
paragraphs until either the end of program is reached or a
TRACE ON statement is encountered or is specified to COBDDT.

6. When compiling for a production run, you should include the
/P switch in the command string so that trace calls will not
be generated and TRACE statements in the program will be
ignored. The following example shows paragraphs with TRACE
OFF and TRACE ON statements included.

5-98 January 1980

THE PROCEDURE DIVISION

TRACE (Cont.)

PROCEDURE DIVISION.
PARA,

TRACE ON,
PARB.

TRACE OFF.
PARC.

.

TRACE ON.
PARD.

Paragraph PARB and PARD are traced. Paragraph PARC is not
traced because the TRACE OFF statement 1is included
immediately before it. If the /P switch is included 1in the
command string .when this program 4is compiled, the TRACE
statements will be ignored and trace calls will not be
generated.

THE PROCEDURE DIVISION

UNSTRING

5.9.41 UNSTRING

Function

The UNSTRING statement is used to split a single data item (for
example, a text string) into several parts, depending on the
occurrence of specified delimiters, and to store the parts into
separate data items where they may be more easily accessed by the
COBOL program.

General Format
UNSTRING identifier-1

identifier-2] identifier-3
pELIMITED BY [ALL] {Htera]-l } [% AL {Hter‘a1-2 }]
INTO identifier-4 [DELIMITER IN identiﬁer—S][COUNT IN identifier-6j

[}dentifier-7 [DELIMITER IN identifier—S:][COUNT IN identif?er—9ii} ce
[:WITH POINTER 1dent1fier—l§][:%ALLYING IN 1dentifier-1i:

[:ON QVERFLOW imperative-statement:]

Technical Notes
1. Source Items

a. The data item referenced by identifier-l1 is called the
source item. The source item must be a DISPLAY-6,
DISPLAY-7, or DISPLAY-9 data item. A numeric source item
is moved to an intermediate unsigned numeric data item of
the same size according to the rules for numeric
transfers and then is treated as alphanumeric.

b. If subscripting or indexing is needed to identify the
source, the values of the required subscripts and/or
indexes and the depending items, if any, just prior to
the execution of the UNSTRING statement are used.

2. Destination Items

a. The data items referenced by identifier-4,
identifier-7,..., are called destination items.
Destination items can be any kind of data items.

b. If subscripting or indexing is needed to identify a
destination item, the values of the required subscripts
and/or indexes and the depending items, 1if any, Jjust
prior to the transfer of data to that destination item
are used.

5-100

THE PROCEDURE DIVISION

UNSTRING (Cont.)

Delimiter Items

a.

b.

The data items referenced by identifier-2,
identifier-3,..., are called delimiter data items.

A numeric delimiter item is moved (according to the rules
for numeric transfers) to an intermediate unsigned
numeric data item of the same size as the delimiter whose
USAGE is the same as that of identifier-1 and then is
treated as alphanumeric.

If subscripting or indexing 1is needed to identify a
delimiter data item, the values of the required
subscripts and/or indexes and the depending items, if
any, just prior to the transfer of data to each
successive destination item are used.

Literal-1l, literal-2,..., are called delimiter 1literals.
Delimiter 1literals must be alphanumeric 1literals or
alphanumeric figurative constants without the ALL
modifier.

If a delimiter 1literal is a figurative constant, it
refers to a single-character 1literal of the specified

type.

If a delimiter data item or a delimiter 1literal is
specified, the contents of the data item or the value of
the literal is a delimiter string for the source.

If more than one delimiter item 1is specified, the
delimiter items are separated by the connective OR. 1In
this case, the several delimiter strings are ordered by
the order in which the delimiter items specifying them
occur in the UNSTRING statement.

If the ALL phrase is specified with a delimiter item, the
delimiter string which that item specifies is considered
to consist of as many occurrences of that simple
delimiter string as can be found contiguously stored in
the source.

A delimiter condition is an occurrence in the source of a
character string, not contained in the portion of the
source that has already been scanned, that matched one of
the delimiter strings, or the rightmost boundary of the
source.

Delimiter Storage Items

a.

b.

A DELIMITER IN phrase may be specified only if the
DELIMITED BY phrase is specified.

The data items referenced by identifier-5 and
identifier-8 are called delimiter storage items.

5-101 January 1980

THE PROCEDURE DIVISION

UNSTRING (Cont.)

If subscripting or indexing 1is needed to identify a
delimiter storage item, the values that are used are the
values of the required subscripts and/or indexes and the
values of the depending items which existed just prior to
the transfer of data to the destination item
corresponding to that delimiter storage item.

Count Storage Items

a. The data items referenced by identifier-6 and
identifier-9 are called count storage items. Count
storage items must be unedited 1integer data items of
sufficient size to contain a value equal to the size of
the source.

b. 1If subscripting or indexing is needed to identify a count
storage item, the values that are used are the values of
the required subscripts and/or indexes and the values of
the depending items which existed just prior to the
transfer of data to the destination item corresponding to
that count storage item.

c. A count storage item is used to store the number of
characters of the source that were examined during the
execution of the UNSTRING statement and approved for
transfer to the destination corresponding to that count
storage item.

NOTE
The number of characters of the source
that were examined 1is not necessarily
the same as the number of characters
that were actually transferred, because
the destination may be too small to hold
all that were approved for transfer.

Pointer

a. The data item referenced by identifier-10 is <called the
pointer. The pointer must be an unedited integer data
item of sufficient size to contain a value one greater
than the size of the source.

b. The pointer serves as a character index for the source.

c. If subscripting or indexing is needed to identify the
pointer, the wvalues of the required subscripts and/or
indexes and the depending items, if any, Jjust prior to
the execution of the UNSTRING statement are used.

d. If the POINTER phrase 1is specified, the pointer |is

directly available to you. It must be initialized before
the execution of the UNSTRING statement to a value
greater than =zero and not greater than the size of the
source.

5-102 January 1980

THE PROCEDURE DIVISION

UNSTRING (Cont.)

If the POINTER phrase 1is not specified, the UNSTRING
statement is always executed as if you have specified a
pointer and set the initial wvalue to 1. In this case,
however, the pointer is not directly available to you.

Destination Counter

a. The data item referenced by identifier-~11 is called the
destination counter. The destination counter must be an
unedited integer data item of sufficient size.to contain
a value equal to the number of destination items
specified in the UNSTRING statement.

b. The destination counter is used to store the number of
destination items to which data was transferred by the
execution of the UNSTRING statement.

c. If subscripting or indexing is needed to identify the
destination counter, the values of the required
subscripts and/or indexes and the depending items, if
any, just prior to the execution of the UNSTRING
statement are used.

d. If the TALLYING phrase 1is specified, the destination
counter is directly available to you, and it must be
initialized before the execution of the UNSTRING
statement.

e. If the TALLYING phrase is not specified, the UNSTRING
statement is always executed as if you had specified a
destination counter and set the initial value to O. In
this case, the destination counter 1is not directly
available to you.

Execution

a. The execution of the UNSTRING statement is an interactive

process. There 1is one iteration for each destination
item specified in the UNSTRING statement, starting with
the first destination item specified and continuing in
order through the series of destination items. However,
the 1iteration process will be stopped after all the data
in the source has been used, even if not all destination
items have been used. During execution of the UNSTRING
statement, the pointer and an increment to be added to
the destination counter are kept in temporary locations.
At the start of execution of the UNSTRING statement, the
real pointer 1is stored in the temporary pointer and the
temporary destination count is set to zero. When it
becomes necessary to move these items to the real pointer
and real destination items, the internal pointer is moved
into the real pointer, the internal destination counter
is added to the real destination counter, and the
internal destination counter is set to zero again.

5-103 January 1980

THE PROCEDURE DIVISION

UNSTRING (Cont.)

Each iteration of the process involved in the execution
of the UNSTRING statement consists of the following
steps:

1. Select a set of characters from the source.

2. If the destination item, delimiter storage item, or
count storage item is subscripted, store the internal
pointer into the real pointer item and update the
real destination counter.

3. Move a representation of these characters to the
destination item for that iteration.

4. Move some characters to the delimiter storage item
corresponding to that destination item, if one is
specified.

5. Set the count storage item corresponding to that
destination item, if one is specified.

6. Advance the internal pointer to indicate a new
position in the source.

7. Increment the internal destination counter.

During the execution of the UNSTRING statement, the
source is treated as if it were a table of
single-character data items indexed by the pointer. The
character position of the source indicated by the
pointer, during each iteration of the UNSTRING process,
is called the pointer-indicated position for that
iteration. Only the pointer-indicated position for an
iteration and those source character positions to its
right are wused during that iteration. Character
positions to the left of that position are not involved
in that iteration in any way.

During each iteration of the UNSTRING process, a scan of
the source 1is done to determine which characters of the
source will be selected as the character set to be moved
to the appropriate destination item. This scan begins at
the pointer-indicated position and continues to the right
in the source.

When the source is scanned, certain conditions are
detected depending on whether or not the DELIMITED BY
phrase is specified.

1. 1If the DELIMITED BY phrase is specified, the scan
ends when either of the following conditions occurs.

a. A string of contiguous characters in the source
that matches one of the delimiter strings is
found.

b. The rightmost boundary of the source is found.

5-104 January 1980

THE PROCEDURE DIVISION

UNSTRING (Cont.)

When the DELIMITED BY phrase is not specified, the
scan ends when either of the following conditions
occurs.

a. A number of characters sufficient to completely
fill the destination is found.

b. The rightmost boundary of the source is found.

When the scan ends, the set of characters to be moved to
the destination item is then known.

The source scan proceeds in one of two ways depending on
whether or not the DELIMITED BY phrase is specified.

1.

If the DELIMITED BY phrase 1is specified, the scan
proceeds as follows:

a. Each character position of the source, starting
at the pointer-indicated position and continuing
to the right, is first checked to see 1if any
source character-string beginning at that
position matches the delimiter~-string specified
by the first delimiter item in the UNSTRING
statement. If such a string is found, condition
a of Note el is satisfied.

b. If no such string is found, the same character
position 1is then checked to see if any source
character-string beginning at that position
matches the second specified delimiter-string.
This process is repeated wusing each successive
delimiter-string until either condition a of Note
el is satisfied or all specified delimiters have
been tried.

c. If condition a of Note el is not satisfied for
the source character position under consideration
and one of the specified delimiter-strings, that
character position is then selected as part of
the source to be moved to the current destination
item.

d. The above process continues until no more source
character positions remain (condition b of Note
el).

If the DELIMITED BY phrase 1s not specified, the
source scan proceeds until one of the following
conditions occurs.

a. Enough successive character positions of the
source have been selected to entirely fill the
destination item (condition a of Note e2).

b. No more source character positions remain
(Condition b of Note e2).

5-105 January 1980

THE PROCEDURE DIVISION

UNSTRING (Cont.)

During each iteration of the UNSTRING process, the set of
contiguous source character positions selected by the
process described in Note f 1is considered to be a
complete individual data item, and is moved to the
current destination item according to the rules for the
MOVE statement, including any class of usage conversion
that might be necessary. You should note that truncation
or fill may occur during the execution of the MOVE
statement. This data item may contain no character
positions at all if the pointer-indicated position
satisfied condition a of Note el or it may contain as
much as the entire source.

If a count storage item is specified with the destination
item for an iteration of the UNSTRING process, the number
of source characters that were examined during the
execution of the UNSTRING statement and approved for
transfer to the destination item is stored in that count
storage item.

If there is a delimiter storage item specified for a
particular iteration of the UNSTRING process, then:

1. If the selection of source character positions
described in Note f is terminated because condition a
of Note el holds, the string of contiguous source
character positions that contain the match for a
delimiter string is treated as a complete individual
data item and is moved to the delimiter storage item
according to the rules for the MOVE statement,
including truncation if necessary.

If the delimiter string that was matched is described
with the ALL phrase, the set of source character
positions containing a match for the simple delimiter
string, plus every immediately succeeding set of
contiguous source character positions containing a
match for the same delimiter string, are used in the
data item that is moved to the delimiter storage
item.

2. If the selection of source character positions
described in Note f 1is terminated because of
condition b of Note el, spaces are moved to the
specified delimiter storage item.

In an iteration of the UNSTRING process, after the
appropriate data has been stored in the destination item,
the delimiter storage item, and the count storage item,
the pointer 1is set to a value one more than the ordinal
number of the 1last source <character position that
participated in the selection process. This includes all
character positions that were selected as part of the
source to be moved to the destination item and, if a
DELIMITED BY phrase is specified, all character positions
that were wused in the successful match of a delimiter
string.

5-106 January 1980

THE PROCEDURE DIVISION
UNSTRING (Cont.)

k. When the UNSTRING statement has been executed, the
real destination counter is updated using the internal
destination counter and the internal pointer 1is stored
into the real pointer.

Overflow

a.

If the initial value of the pointer is less than one or
greater than the size of the source, execution of the
UNSTRING statement is aborted before any data is
transferred, the real pointer's value is unchanged, and
the UNSTRING statement is considered to have caused an
overflow.

If, during the execution of an UNSTRING statement, data
has been transferred to all of the destination items in
accordance with Note g, but the updated pointer still
contains a value 1less than or equal to the size of the
source (that 1is, not all of the source character
positions have been used in the UNSTRING process), the
UNSTRING statement 1is considered to have caused an
overflow.

If the ON OVERFLOW phrase is not specified, after the
execution of the UNSTRING statement, regardless of
whether or not there was an overflow, control passes to
the point 1in the program immediately following the
UNSTRING statement.

If the ON OVERFLOW phrase 1is specified, after the
transfer of characters has ended and the pointer and
destination counter are set to the appropriate values,
the flow of control of the program depends on whether or
not there was an overflow.

1. If an overflow did not occur, control passes to the
point in the program corresponding to the end of the
sentence containing the UNSTRING statement (following
all the statements in the ON OVERFLOW phrase).

2. If an overflow did occur, control passes to the point

in the program corresponding to the beginning of
statement-1.

5-107 January 1980

THE PROCEDURE DIVISION

USE

5.9.42 USE

Function

The USE statement specifies procedures for error handling that are in
addition to the standard procedures provided by the input-output

control system.

General Format

file-name-1 OPEN [file-name-2 | OPEN

INPUT
USE AFTER STANDARD ‘Eé%ﬁfllgﬂ PROCEDURE ON ¢ QUTPUT
- .___QE 1-0

EXTEND

USE BEFORE REPQRTING identifier.

Technical Notes
1. USE statements may appear only in the Declaratives portion of
the Procedure Division. The Declaratives portion follows
immediately after the PROCEDURE DIVISION header and begins
with the word
DECLARATIVES.
The Declaratives portion ends with the words

END DECLARATIVES.

Following this must be a section-header as the first entry of
the main portion of the Procedure Division.

The DECLARATIVES portion itself <consists of USE sections,

each consisting of a section-header, followed by a USE
statement, followed by the associated procedure paragraphs.

5-108

THE PROCEDURE DIVISION

USE (Cont.)

The general format for the DECLARATIVES portion is given
below.

PROCEDURE DIVISION.
DECLARATIVES.

section-name-1 SECTION. USE......
paragraph-name-la. (statement)
[paragraph~-name-1b. (statement)]
[section-name~2 SECTION. USE......]

END DECLARATIVES.
section-name-m SECTION.

The USE statement may follow on the same 1line as the
section-header and must be terminated by a period followed by
a space. The remainder of the section must consist of one or
more procedural paragraphs that define the procedures to be
used.

The USE statement itself is never executed, rather it defines
the conditions calling for the execution of the USE
procedures.

Format 1 causes the designated procedures to be executed
after completing the standard input-output error routine.

There must not be any reference to any non-DECLARATIVES
procedure within a USE procedure. Conversely, there must be
no reference to procedure-names that appear within the
DECLARATIVES portion in the non-DECLARATIVES portion, except
that PERFORM statements may refer to a USE section or to a
procedure contained entirely within such a USE section.

No input/output can be performed other than ACCEPT and
DISPLAY statements during execution of a USE procedure.

Format 1 causes the associated procedures to be executed
after the standard input-output error routine has been
executed. If the INPUT option is used, the procedures will
be executed for all INPUT files; if the OUTPUT option is
used, they will be executed for all OUTPUT files; if the I-O
or the INPUT-OUTPUT option is used, they will be executed for
all INPUT-OUTPUT files; 1if the filename-1 format is used,
they will be executed only for that particular file. If more
than one USE procedure could apply in a situation, only one
will actually be executed. The procedure to be used will be
the one which is most restrictive, that 1is, the one which
applies most closely to the situation in question. For
example, suppose you specify the file-name-1 option and the
OPEN option, and you get an error when you attempt to open
file-name-1l. The procedure you specified for the file-name-1
option will be executed, but the procedure for the OPEN
option will not, because it is less restrictive.

5-109

THE PROCEDURE DIVISION

USE (Cont.)

If the filename-1 OPEN format is used, the system performs
the associated procedures only if a "FILE BEING MODIFIED"
error occurs when an attempt is made to open an output file.
After performing the procedure, the system automatically
tries again to open the file, repeating this process until
the file 1is opened. This option allows you to suspend your
job until it can access a file that another wuser is
modifying.

Identifier-1 in Format 2 represents a report group named in
the Report Section of the Data Division. An identifier must
not appear in more than one USE statement. The report group
must not be TYPE DETAIL.

5-110

THE PROCEDURE DIVISION

WRITE

5.9.43 WRITE

Function

The WRITE statement transfers a logical record to an output file.

General Format

WRITE record-name [:FROM identifier-i]

l {jdentifier-z }l:LINE]
{2E$2EE aovANCING) linteger LINES
‘ {mnemonic—name}

PAGE

{%%E;QE;EAQE} imperative-statement

WRITE record-name [:FROM 1dent1fie{] [:INVALID KEY 1mperat1ve—statemen{]

Technical Notes

1. An OPEN OUTPUT, OPEN I-O, OPEN INPUT-OUTPUT or OPEN
statement must be executed for the file prior to

execution of the WRITE statement. SEQUENTIAL files and files
with SEQUENTIAL ACCESS must be OPEN OUTPUT or OPEN EXTEND.
OPEN EXTEND is valid only for SEQUENTIAL ORGANIZATION files.

2. After the WRITE is executed, the data in record-name-1 may no

longer be available.

3. Record-name-1 must be the name of a logical record in a
RECORDS clause of the File Section of the Data Division.

4., Format 1 is valid for any file currently open for output with
ACCESS MODE IS SEQUENTIAL. The ADVANCING clause allows

control of the vertical positioning of the paper form
print files as follows:

a. If the ADVANCING clause is not specified and

recording mode is ASCII, BEFORE ADVANCING 1 LINE is

assumed.

b. If identifier-2 or integer-1 1is specified, it

represent a positive integer or zero. The form is
advanced the number of 1lines equal to the value

identifier-2 or integer-1.

5-111 January 1980

THE PROCEDURE DIVISION

WRITE (Cont.)

c. If mnemonic-name is specified, the form is advanced until
the specified channel is encountered on the paper-tape
format control loop. Mnemonic-name must be defined by a
CHANNEL clause in the SPECIAL-NAMES paragraph of the
Environment Division.

d. If the BEFORE option 1is used, the record 1is printed
before the form positioning.

e. If the AFTER option is used, the record is printed after
form positioning occurs, and no form positioning takes
place after the printing.

If end-of-reel is encountered while writing on magtape, the
WRITE statement performs the following operations:

a. A file mark is written, and the tape is rewound.

b. If the file was assigned to more than one tape unit, the
units are advanced.

c. If labels are not OMITTED, a label is written on the new
tape.

If the END-OF-PAGE phrase is specified, the LINAGE clause
must be specified 1in the file description entry for the
associated file. The words END-OF-PAGE and EOP are
equivalent.

The ADVANCING mnemonic-name phrase cannot be specified when
writing a record to a file whose file description entry
contains the LINAGE clause.

The POSITIONING clause allows control of the vertical
positioning of the paper form for print files. The record is
written after the printer page is advanced according to the
following rules:

a. If identifier-2 is specified, it must be described as a
one character alphanumeric item; that is, with PICTURE
X. The valid values that identifier-2 can contain and
their interpretations are as follows.

blank Single spacing

0 Double spacing

- Triple spacing

+ Suppress spacing

1-8 Skip to channels 1 through 8 respectively
on the paper~-tape format control loop

5-112 January 1980

10.

11.

12.

13.

14.

15.

THE PROCEDURE DIVISION

WRITE (Cont.)

Note that the object-time system interprets the value in
identifier-2, substituting the proper positioning
characters into the ASCII file. The character stored in
the field named identifier-2 is not stored in the output
file.

b. If integer-1 is specified, it must be unsigned, and must
be one of the values 0, 1, 2, or 3. The values have the
following meanings.

0 Skip to channel 1 of next page (carriage
control "eject")

1 Single spacing

2 Double spacing

3 Triple spacing

Either ADVANCING or POSITIONING can be specified for a file,
but not both. Also, if either is specified, the recording
mode of the file will be ASCII, regardless of the recording
mode specified in the RECORDING MODE clause.

The INVALID KEY clause is illegal for SEQUENTIAL FILES.

The INVALID KEY clause is executed if either of the following
conditions exist:

a. The RELATIVE or RECORD KEY indicates a record that
exists.

b. For INDEXED files with SEQUENTIAL ACCESS, the value of
the RECORD KEY is not greater than the value of the
RECORD KEY for the previous record.

INDEXED files that have SEQUENTIAL ACCESS must be written
with RECORD KEYS in ascending order.

If a RELATIVE KEY is specified for a RELATIVE file with
SEQUENTIAL ACCESS, the relative record number of the record
just written is placed into the RELATIVE KEY data item. A
RELATIVE file with SEQUENTIAL ACCESS is written sequentially
starting with record number 1.

When executing a WRITE statement for a SEQUENTIAL file opened
for INPUT-OUTPUT, the logical record is placed on the file as
the next 1logical record 1if the previous input-output
operation was a WRITE, or it replaces the previous record if
the previous input-output operation was a READ.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

If the FROM option is used, the statement is equivalent to:

MOVE identifier-1 TO record-name-1
WRITE record-name-1 (without the FROM option)

Note that identifier-1 must be a data-name and cannot be a

figurative constant (for example, SPACES), because it is
syntactically equivalent to a literal.

5-113 January 1980

THE PROCEDURE DIVISION
VERB FORMATS

THE PROCEDURE DIVISION

GENERAL FORMAT FOR PROCEDURE DIVISION

PROCEDURE DIVISION EJSING data-name-1 Eata-name-z:]]
E)ECLARATIVES‘

{section-name SECTION Esegment-number] . declarative-sentence

[paragraph-name. Esentence]] }

END DECLARATIVES.

{section-name SECTION Eegment-number]

[:paragraph-name. Esentence:] :l }

5-114

THE PROCEDURE DIVISION

. GENERAL FORMAT FOR VERBS

ACCEPT identifier-1 identifier-2 ... [}ROM mnemonic-namé]
‘ DATE
ACCEPT identifier FROM { DAY
| TIve
200 {;gggﬁ;m“l Dgggggﬂgr-?:l . 10 identifier-n [RouNGES]

[:identifier-n [ROUNDE@] [ON SIZE ERROR imperative—statemenﬂ

DD identifier-1 identifier-2 identifier-3
Titeral-1 literal-2 literal-3

GIVING identifier-m [ROUNDED:] Edentiﬁer-n Ezounnzoj:l

>

[pN SIZE ERROR imperative-statement]

DD %W} identifier-1 TO identifier-2 E!OUNDED]

[ON SIZE ERROR imperative-statement:]

ALTER proceddre—name-l T0 [PROCEED TQ] procedure-name-2
[:procedure-name-3 T0 [?ROCEED Tq:] procedure-name-4 :]

identifier-1
CALL ! program-name {]gigyg data-name-1 [:data-name-z:] ..;]
entry-name -

[:ON OVERFLOW imperative-statemen{]

5-115

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

identifier-1 identifier-2
CANCEL z subprogram-1 } [:subprogram-%J

REEL [NO REWIND) |
{———} WITH LOCK
UNIT DELETE
CLOSE file-name-1
FOR REMOVAL
NO REWIND \ |
B@}:I WITH {LCK
i1e-name- UNIT LOCK
file-name-2 UNIT DELETE
FOR REMOVAL

CLOSE file-name-1 EJITH LOCK] [:fﬂe-name-Z [wITH LOCK]]

identifier-2

COMPUTE identifier-1 EROUNDED] B]itera] % EROUNDED:]]

arithmetic-expression

‘ IS EQUAL TO)
' EQUALS s arithmetic-expression [:ON SIZE ERROR imperative-statemenﬁ]

DELETE file-name RECORD [}NVALID KEY imperative-statemen{]

DISPLAY{ }figﬁ;m"'} {}figﬁ;flg"z ﬂ .. [[uPON mnemonic-name | [WITH NO ADVANCING]

5-116

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

DIVIDE {}?izﬁ;f“j”} INTO identifier-2 [ROUNDED |

[}dentifier-3 [BOUNDEq:[] . [:ON SIZE ERROR imperative-statement:]

identifier-1 identifier-2 . .
DIVIDE {Hteral—l } INTO {literal-Z } GIVING1dent1f1er-3”|:ROUNDED]

Edentifier-lt EROUNDED]] EON SIZE ERROR imperative-statemeng
identifier-1 identifier-2 . .
DIVIDE {Htem_l } BY {Hter‘a]-z } GIVING identifier-3 [ROUNDED]

Eientifier-4 [ROUNDE[ZI:l E)N SIZE ERROR imperative—statemenﬂ

o

identifier-1
} INT literal-2 -

DIVIDE {Htem_l {‘de"t‘f‘e"‘z} GIVING identifier-3 [ROUNDED |

REMAINDER identifier-4 [_—_ON SIZE ERROR imperative-statement:]

DIVIDE {}fﬁg:;fjir’l} BY {}fﬁgﬁ;flg‘”‘z} GIVING identifier-3 [[ROUNDED |

REMAINDER identifier-4 |:0N SIZE ERROR imperative-statemenﬂ

RN L ST Bt I ket il
l.C.QB_OL ‘ - lprocedure-name-l (procedure-name-z‘

ENTRY entry-name [:PSING identifier-1 [Edentifier-i] ..;]

m
>
—
—

EXIT [:PROGRAM

5-117

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

f (

RECORD | KEY l jdentifier-1]]
file-name-1 | [— | literal-1

EVERY RECORD
\

,file-name-2
EVERY RECORD

EVERY RECORD
\

[NOT_RETAINED statement-1 [,statement-2] ...] -
data-name
GeNeRATE { foortene)
G0 TO procedure-name-1 [:procedure-name—z:] v procedure-name-n

DEPENDING ON identifier

GOBACK.

fys statement-1 statement-2
LE condition {{f7 SENTENCE | [?L§§ {iExt SENTENCE}]

INITIATE report-name-1 [report-name-2]

5-118

identifier-2
RECORD [kY [literal-2

]

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

INSPECT identifier-1 TALLYING

ALL identifier-3 . cos
i denti Fier-2 @‘ {{LEADING} {iieaers }}Bﬁﬁgf} INITIAL {}_ﬁigt;ﬂg‘”"}]}
l CHARACTERS oER ’

INSPECT identifier-1 REPLACING

identi fier-6| [(BEFORE identi fier-7
ounacters gy {1{E001T1 }[{AFTER} INTIAL {1 i8enaT s }]

ALL . s : - - s s I
) e identifier-5 identifier-6) [{BEFORE identifier-7
1{——'—”'31”3}{{1“”“-3 } B {11‘tera1-4 }[{AFTER} INITIAL {]1‘tera1-5 }]‘ }

FIRST

INSPECT identifier-1 TALLYING

ALL identifier-3 . s os
i denti Fier-2 FO_R‘ %{LEADING} {Htera]-l }}[{ﬁﬁggE} INITIAL {}f‘;gﬁ;f‘g‘”“ﬂ})
| \CARRACTERS AFTER

REPLACING

" . fidentifier-6\ [/BEFORE identifier-7
wy{ﬁterahl& }[{AFTER} INITIAL {1itera1-5 }]

ALL ‘ . o i o . o l
= identifier-5 identifier-6} [{BEFORE identifier-7
{{%ﬁg—%‘;} l{]itera1-3 } BY {11’tera1_—4 }[{AFTER} INITIAL {Htera]-s }]$;

MERGE [WITH SEQUENCE CHECK] file-name-1 ON {%%G} KEY data-name-1 [data-name-2:|

ON {%%%%%%%%%G} KEY data-name-3 [: data—name-4:} ..

[FOLLATING SEQUENCE IS a]phabet—name:]

USING file-name-2 file-name-3 [:f11e—name-4:] .

THROUGH

THRU section-name-2

QUTPUT PROCEDURE IS section-name-1

GIVING file-name-5

identifier-1 . s os . .
MOVE {Hteral } T0 identifier-2 [1dent1f1er-3}

CORR

{—————CORRESPONDING} identifier-1 TO identifier-2

5-119 January 1980

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

identifier-1 . ..
Titeral-1 § BY identifier-2 [:ROUNDED:]

MULTIPLY %

identifier-3 [ROUNDED] l:ON SIZE ERROR imperative-statement:l

identifier-1 identifier-2 . . os
MULTIPLY {1itera1-1 } BY {]itera]-z GIVING identifier-3 | ROUNDED
identifier-4 [jROUNDED:] e [bN SIZE ERROR imperative-statement:]
\
INPUT i REVERSED N REVERSED
[QUTPUI‘ file-name-1 [with no rewind [:f‘1e name-2 [NITH NO gsuxun]}
READ READ
) REWRITE REWRITE
l%ﬁ%UT-OUTPUTl file-name-3 | FOR { WRITE AND { WRITE
ANPUI-OUT UL DELETE DELETE
ANY VERB ANY VERB
NONE NONE
READ REA
woms s | B [| o | A
DELETE DELETE
ANY VERB ANY VE
OPEN 4 —
READ REA
REWRITE REWRITE
file-name-4 | FOR { WRITE anp { WRITE .
DELETE DELETE
ANY_VERB ANY VERB _
NONE NONE
READ READ
ALLOWING OTHERs { BEMRITE %) pyp J RENRITE
DELETE DELETE
ANY VERB ANY VERB
[exTeNd] file-name-5 [fi1e-name-61]
[UNAVAILABLE statement-1 [statement-2] .] .

THROUGH

THRU procedure-name-2

}

THROUGH }
THRU

5-120

PERFORM procedure-name-l[{

N {1dentifier—1

procedure-name-2 Jinteger-1 } TIMES

PERFORM procedure-name-l[{

THROUGH

THRU UNTIL condition-1

PERFORM procedure-name-l[{ procedure-name-2

January 1980

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

THROUGH

THRU } procedure-name-2 :I

PERFORM pr‘ocedure-name-l[{

identifier-3

identifier-2 .
VARYING . FROM index-name-2
—_— {mdex-name-l} —_ {11’tera1-1 }

BY {}?ig:gfjgr'4} UNTIL condition-1
. s e identifier-6
arter Jidentifier-56 - epow index-name—4}
literal-3
BY {]?ig:;fjj"'7} UNTIL condition-2

identifier-9

AFTER {;gggm;g;g} RO indew-nane-d
lTiteral-5

identifier-10 .
BY {11'ter‘a1-6 } UNTIL cond1t1on-3i|

READ file-name [NEXT:‘ RECORD [INTO 1'dent1'f1'er‘]

[AT END imperative-statement]
READ file-name RECORD [INTO identifier] l:INVALI'D KEY imperative-statementj

READ file-name RECORD [INTO identi ﬁer]

: [55_\(IS data-name]

|:INVALI D KEY imperati ve-statement]

RELEASE record-name [FROM identifier]

5-121

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

. identifier-ll
RETAIN file-name-1 RECORD [I_(_E_Y [identifie]

READ B READ
REWRITE REWRITE
READ-REWRITE READ-REWRITE
FOR { DELETE AND { DELETE e 3 [UNTIL FREED]
WRITE WRITE
READ-WRITE READ-WRITE
ANY VERB ‘ANY VERB]

) identifier-2
,file-name-2 RECORD [_El. l]itera1—2]

READ [READ
REWRITE REWRITE
READ-REWRITE READ-REWRITE
FOR { DELETE anp < DELETE ceo | ¢ [unrie erego |
WRITE WRITE R
READ-WRITE READ-WRITE
ANY VERB ANY VERB J
-
UNAVAILABLE statement-1 [,statement-2] ...] .

. - es identifier-2 : :
SEARCH identifier-1 [:VARYING {index—name-l E] [}T END 1mperat]ve-statement-f]
imperative-statement-2 }

WHEN condition-1 { NEXT SENTENCE

e imperative-statement-3 }
[TWHEN condition-2 { NEXT SENTENCE ce

SEARCH ALL identifier-1 [AT END 1mperative-statement-1]

identifier-3
‘data-name-l {%g E UAL TO} {1itera1-1 } }

WHEN l arithmetic-expression-1
condition-name-1
data-name-2 {IS EQUAL TO} identifier-4
AND IS = Titeral-2
—_— condition-name-2 arithmetic-expression-2

{ imperative-statement-2 }
NEXT SENTENCE

5-122 January 1980

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

identifier-3
SET {identifier-l [identifier-2] } index-name-3.
index-name-1 [index-name-2] **° TO integer-1

{ UP BY } {1‘dentif1’er-4}

SET index-name-4 [[index-name-5_] DOV BY § \integer-2

SORT file-name-1 ON {%%%%G} KEY data-name-1 [data-name-Zj

ASCENDING
|:0N {DESCENDING} KEY data-name-3 [data-name-4]]

[COLLATING SEQUENCE IS alphabet-nane |

“INPUT PROCEDURE IS section-name-1 l:{%g_%u@_} section-name-z:\

USING file-name-2 [fi 1 e-name-3]

OUTPUT PROCEDURE IS section-name-3 [{%E%JG—H} section-name-4:|

GIVING file-name-4

IS EQUAL TO
IS =
START file-name | KEY %g gﬂ]ﬂ THAN data-name
IS NOT LESS THAN
IS NOT ¢
[INVALID KEY imperative-statement]
RUN

STOP {h‘tera]}

. . o . . identifier-3
identifier-1 identifier-2 ‘1.

STRING {Hteral—l } [Hterahz] DELIMITED BY 11S1I1Z:tgra1-3 s
. . s . L s identifier-6
identifier-4 identifier-5 1¢ I
{Htera1-4 % lilitera]-S :\ DELIMITED BY 1S1ItZeEra1—6 ‘

INTO identifier-7 I:NITH POINTER identifier-8]

[ON QVERFLOW imperati ve-statement]

5-123 January 1980

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

identifier-1 identifier-2 . ‘s
SUBTRACT {Hteral—l } [Htera]_z :| .+ EROM fdentifier-m [ROUNDED]
[identifier-n [ROUNDED]:I ... [ON SIZE ERROR imperative-statenent |
identifier-1 identifier-2 identifier-m
SUBTRACT {Htera]—l }[]itera]-z :I --- EROM {Hteral-m }

GIVING identifier-n [ROUNDED:I [identifierno [ROUNDED:[I

[:ON SIZE error imperative—statement]

SUBTRACT {;CCOOE—EESM} identifier-1 FROM identifier-2 I:ROUNDED]

I:ON SIZE ERROR imperat’ive-statement]

TERMINATE report-name-1 [:report-name—g]
ON
TRACE {fo}
UNSTRING identifier-1
identifier-2 identifier-3
ey or (] fdercive } [&& [aus] ftsminfs }]

INTO identifier-4 I:DELIMITER IN identiﬁ'er-S][COUNT IN identifier-B:I

|:1'dent1’f1'.er-7 I:DELIMITER IN identifier-B] [COUNT IN identifier-9:|:|

[:WITH POINTER identifier-lé][:TALLYING IN identifier-l{]

[:ON OVERFLOW imperative-statement:]

5-124

THE PROCEDURE DIVISION

GENERAL FORMAT FOR VERBS

fFile-name-1 0PEN[}11e-name-z:]0PEN..,

INPUT
USE AFTER STANDARDJEXCEPTIONU oo6cenyre on{ QUTPUT
USE AFTER ERROR ouL

EXTEND

USE BEFORE REPORTING identifier.

WRITE record-name [:FROM identifier-{]

<1dent1fier-2 } LINE
integer LINES

{mnemonic-name}

{BEFOREQ ADVANCING

AFTER ’
PAGE

AT {%%%;QE;EAQE} imperative—statemen{}

.

WRITE record-name [:FROM identifierj] [:INVALID KEY imperative-statement:]

5-125

CHAPTER 6

COMPILER COMMAND STRINGS

The general form of the compiler command string is as follows:

relfil,lstfil= 1ibfil/1, srcl,src2,...

where:

relfil is the file that is to hold the generated code.
If no generated code 1is desired, the file
description for relfil is replaced by a hyphen.
Example: -,lstfil=srcl,src2...

lstfil is the file that is to hold the generated listing.
If no listing is desired, the file description for
1stfil is replaced by a hyphen.
Example: relfil,-=srcl,src2,...

libfil is the optional library file referenced by COPY
verbs in the source files.

srcl,src2 are one or more source files required to form one

input program.

Each file description has the following form:
device:file.ext [project,programmer]/switch/switch
where:
device is the name of a physical or logical device.
The name is composed of 6 or fewer letters
* and/or digits.

file igs the name of a file. The name 1is composed
of 6 or fewer letters and/or digits.

ext is the filename extension. It is composed of
3 or fewer letters and/or digits.

project is a user's project number.
programmer is a user's programmer number.
switch is any of the switches shown in Table 6-1.

COMPILER COMMAND STRINGS

Users of TOPS-20 who wish to specify a directory other than
the default may run the TRANSLATE program to determine the
correct project-programmer number. (See the TOPS-20 User's
Guide for information on how to do this.) For an alternative
which is generally more wuseful, see Appendix E, Defining
Logical Names under TOPS-20.

Certain default assignments are made by the compiler whenever
terms are omitted from the command strings or the file
descriptions.

1. 1If the device is omitted in any output file description,
DSK 1is assumed. If the device is omitted in an input
file description, either the preceding device or DSK (if
no preceding device is specified) is assumed.

2. If the filename for relfil and/or 1lstfil is omitted, the
filename of the first source file is used.

3. If the filename extension is omitted from relfil, .REL is
assumed; if it is omitted from 1stfil, .LST is assumed.
If the extension is omitted from the source file
descriptor, the compiler looks in the file area for the
named file with the extension .COB. If that file is not
found, the compiler 1looks for the named file with the
extension .CBL. If that file is not found, the compiler
looks for the named file without an extension. If the
extension is omitted from the library file description,
.LIB is assumed.

4. If the [project,programmer] option is omitted on any
file, the user's default path is used. On TOPS-20, the
connected directory is used.

Examples:
MTAl:RELOUT.A/W,LPT:=DSK:SRCIN.C [27,36]/M/S

The compiler compiles the program found in the file SRCIN.C
in the area reserved for project-programmer 27,36. It treats
columns 1-6 of the source as a sequence number (/S). The
generated code is written on MTAl, after the tape is rewound
(/W). The listing, including maps (/M) is put on the LPT.

=LIBl/L,PROG/A

The compiler compiles the program found in PROG.CBL (CBL is
assumed because the filename extension is omitted from the
source file descriptor) on the disk, using LIB1.LIB whenever
a COPY verb is seen (/L). The generated code goes into the
file DSK:PROG.REL, and the listing onto the file
DSK:PROG.LST. The generated code is listed (/A).

-=LIB1/L,PROG/A
This is identical to the preceding example, with the

exception that no generated code is produced because the file
descriptor for the file has been replaced by a hyphen.

COMPILER COMMAND STRINGS

Table 6-1
COBOL Switch Summary

Switch Action by Compiler

A List the machine code generated in the 1stfil.

B Generate code for all DEBUG lines (those with /D
in col. 7) which otherwise would be treated as
comments.

C Produce a cross-reference table of all
user-defined symbols.

D:nnnnnn Increment, in octal words, to be added to the
object time push down list size.

E Check program for errors, but do not generate
code.

H Type description of COBOL-74 command strings and
switches.

I Suppress output of start address (program is to
be used only by CALL's).

J Force output of start address in spite of the
presence of subprogram syntax.

L Use the preceding source file as a library file
whenever a copy verb 1is encountered. If the
first source file is not a /L file, LIBARY.LIB
is used as the library file until the first /L
file is encountered. (The default extension for
library files is ".LIB".)

M Include a map of the user defined items in the
1stfil.

N Do not type compilation errors on the user's
terminal.

0 Optimize the object code.

P Production mode. Omit debugging features from
relfil.

Q Quick mode. Do .not range check PERFORMs, also
turn on /O and /P.

R Produce a two-segment object program. The high
segment will contain the procedure division;
the low segment all else.

S The source file 1is in "conventional" format
(with sequence numbers in cols. 1-6 and
comments starting in col. 73).

u Produce a one-segment object program.

COMPILER COMMAND STRINGS

Table 6-1 (Cont.)
COBOL Switch Summary

Switch Action by Compiler
W Rewind the device before reading or writing
(magtape only).
X Give a usage of DISPLAY-9 to items whose usage
is either omitted or declared as DISPLAY.
Y Flag DIGITAL extensions to ANS-74 standard.
Z

Zero the directory of the device before writing
(DECtape only).

CHAPTER 7

COBOL~-74 UTILITY PROGRAMS

COBOL-74 provides several utility programs that allow you to perform
operations within your COBOL program. These utility programs

certain
are:
°
°
)
°

ISAM -

LIBARY -

COBDDT -

RERUN -~

Indexed-Sequential File Maintenance Program

ISAM provides you with the ability to create and
maintain indexed-sequential files (see section 7.1).

Source Library Maintenance Program

LIBARY provides you with the facility to create,
modify, and delete statements or groups of statements
in a library file (See Section 7.2).

Program For Debugging COBOL Programs

COBDDT provides you with the ability to:

1. Look for areas of error by setting breakpoints

2. Trace the activity of procedures

3. Display and, if necessary, change the contents of
data-items

4. Determine time spent in sections of the program
by analyzing a histogram (see Section 7.3)

Program to Restart COBOL-74 Programs
RERUN provides you with the ability to restart a

COBOL-74 program after an abnormal termination has
occurtred (See Section 7.4).

COBOL-74 UTILITY PROGRAMS

NOTE

Many of the examples in this chapter are
written for only one operating system -
that is, they have either the TOPS-10
prompt (.) or the TOPS-20 prompt (@)
alone. However, unless you are told
otherwise, the examples apply to both
TOPS-10 and TOPS-20. Thus, in this
chapter you may substitute

-R (program name)<RET>
for

@ (program name) <RET>

and vice versa.

7.1 ISAM - INDEXED-SEQUENTIAL FILE MAINTENANCE PROGRAM
Indexed-sequential files are created, maintained, and compacted for
backup storage by means of the ISAM program. ISAM performs the
following functions:

1. Builds an indexed-sequential file from a sequential file

2. Maintains an indexed-sequential file by reorganizing it

3. Packs an indexed-sequential file into a sequential file for
backup storage

ISAM has the following switches which you may use to perform these
functions:

B Build an indexed file from a sequential one

I Ignore errors in packing a file (this switch may only be used
with the P switch)

L Read or write standard tape labels (this switch may only be
used with the B or P switches)

M Maintain your indexed file by reorganizing it

P Pack your indexed file for backup storage

Figure 7-1 shows the COBOL-74 ISAM File Environment.

COBOL-74 UTILITY PROGRAMS

{INPUT SEQUENTIAL

DATA FILE)
. \ R ISAM

i

ISAMF L
10X
RISAM
RUN
MYPROG (MAINTAIN)
ISAMFL
DA

(USER'S APPLICATIQN PROGRAM)
R ISAM

e
(PACK)

BAKFIL (OUTPUT SEQUENTIAL
SEQ BACKUP FILE)

MR-§-029.79

Figure 7-1 COBOL-74 ISAM File Environment

COBOL-74 UTILITY PROGRAMS

7.1.1 Building an Indexed-Sequential File

To build an indexed-sequential file you must provide a sequential file
in which the record keys are arranged in ascending order. The ISAM
program will use this file to create an indexed-sequential data file
with a user-specified number of empty records and blocks. ISAM then
creates the index file according to the description of the data file.

To run the ISAM program and select the option for building the
indexed-sequential file, type the following:

.R ISAMCRET> for users of TOPS-10
or
@ISAMCRET> for users of TOPS-20
*devl:indfil.ext[ppnl],dev2:datfil.ext=dev3:seqfil.ext [ppn2]/B
where:

devl, dev2, and dev3 are the devices for +the index, data, and
input sequential file. Devl and dev2 must be disk. The default
for devl, dev2, and dev3 is DSK.

indfil.ext is the name and extension of the index file. If the
filename is not specified, the name of the input file is assumed.
If the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the data file. If the
filename is omitted, the name of the index file is assumed. If
the extension is omitted, .IDA is assumed.

seqfil.ext is the name and extension of the input sequential
file. This filename must be specified, but the extension can be
omitted. If it is omitted, .SEQ is assumed.

[ppnl]}, [ppn2] specify directories for the index file and the
input file, respectively. If either 1is omitted, then the
directory of the logged-in user is assumed. The data file must
reside in the same directory as the index file. Users of TOPS-20
who wish to specify a directory other than the default may run
the TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20 User's Guide for information on how to
do this.) For an alternative which is generally more useful, see
Appendix E, Defining Logical Names under TOPS-20.

/B is the switch signifying that ISAM will be used to build an
indexed-sequential file. If the switch 1is omitted from the
command string, /B is assumed. The equal sign (=) can be omitted
if the specifications for the output files are omitted.

After reading the command string, ISAM asks a series of questions,
which are described below. Every question must be answered.

MODE OF INPUT FILE:
Reply with S, A, F, V, or ST according to the mode of the input file.

S means SIXBIT, A means ASCII, F means fixed-length EBCDIC, V means
variable-length EBCDIC, and ST means STANDARD-ASCII.

COBOL~74 UTILITY PROGRAMS

MODE OF DATA FILE:
Specify S, A, F, or V according to the mode in which the ISAM data
file is to be recorded. S means SIXBIT, A means ASCII, and both F and
V mean EBCDIC, as above. If the mode of the input file differs from
that of the data file, characters will be converted in the same manner
as they are converted in standard COBOL-74 operations.

MAXIMUM RECORD SIZE:
Specify the size of the largest record in the input file in Dbytes.
For ASCII records you should not count the carriage return and line
feed that are appended to each ASCII record.

KEY DESCRIPTOR:

Describe the key upon which the file is to be indexed using a code
that has the form:

[s] [x]m.n
where:

s designates the sign of the key:
S - the key is signed
U - the key 1is unsigned

X indicates the key type:
X - the key is nonnumeric
N - the key is numeric display
C - the key is COMPUTATIONAL
F - the key is COMPUTATIONAL-1
P - the key is COMPUTATIONAL-3

m specifies the number of the character in the record where the
key begins.

n specifies the size of the key in characters for types X and N
or in digits for types C and P. If n is less than or equal to
10 for type C, one word is used. If n is greater than 10, two
words are used. n is ignored for type F because it is always
one word long.

The following rules apply to the key descriptor;

1. The key type is optional: if 8 or U are specified the
default is N. Otherwise, the default is X.

2. The key sign is optional; the default is S if the key type
is not X.

3. The sign designators S or U cannot be specified in
conjunction with type X.

4. m and n must be specified.

COBOL-74 UTILITY PROGRAMS

RECORDS PER INPUT BLOCK:

Give the blocking factor of the input file. If the file is unblocked,
0 should be specified.

TOTAL RECORDS PER DATA BLOCK:

Give the total number of records to be contained in each block of the
data file.

EMPTY RECORDS PER DATA BLOCK:

Specify the number of records that are to be initially left empty in
each block of the data file.

TOTAL ENTRIES PER INDEX BLOCK:

Specify the total number of index entries to be contained in each
block of the index file.

EMPTY ENTRIES PER INDEX BLOCK:

Specify the number of index entries that are to be initially left
empty in each index block. Note that at least two entries must be
available in each index block, so that the number of total entries
minus the number of empty entries must equal or exceed two.

PERCENTAGE OF DATA FILE TO LEAVE EMPTY:

Give, as a percentage of the total number of blocks, the number of
blocks to be initially left empty in the data file.

PERCENTAGE OF INDEX FILE TO LEAVE EMPTY:

Give, as a percentage of the total number of blocks, the number of
blocks to be initially left empty in the index file.

MAXIMUM NUMBER OF RECORDS FILE CAN BECOME:

Reply with the maximum number of records that the data file can
possess before the file 1is next maintained. This number sets the
upper limit of the size of the data file. It 1is required because
storage allocation tables must be set up in the index when the file is
created. There is no harm in making this number excessively large
because the index data blocks are allocated in the storage allocation-
tables, but not actually assigned until needed.

Example - Building an indexed-sequential file

.R ISAM

*TEST.IDX, TEST.IDA=TEST.SEQ /B

MODE OF INPUT FILE: SIXBIT

MODE OF DATA FILE: SIXBIT

MAXIMUM RECORD SIZE: 40

KEY DESCRIPTOR: SN37.4

(The key is signed numeric display; it begins in the
thirty-seventh byte; and it is four bytes long.)

RECORDS PER INPUT BLOCK: 3

TOTAL RECORDS PER DATA BLOCK: 2

EMPTY RECORDS PER DATA BLOCK: 1

TOTAL ENTRIES PER INDEX BLOCK: 3

EMPTY ENTRIES PER INDEX BLOCK: 1

PERCENTAGE OF DATA FILE TO LEAVE EMPTY: 60
PERCENTAGE OF INDEX FILE TO LEAVE EMPTY: 10

MAXIMUM NUMBER OF RECORDS FILE CAN BECOME: 12000

7-6

COBOL-74 UTILITY PROGRAMS

7.1.2 Maintaining an Indexed-Sequentfal File

The ISAM program allows you to maintain an existing ISAM file after
the file has become <crowded. More empty space may be added to the
file and the number of index levels may be decreased. That 1is, the
files are rearranged and indexes are streamlined. The input is the
indexed-sequential file and the output 1is a new indexed-sequential
data and index file. The command string for the ISAM maintain option
is as follows:

.R ISAM<RET> for users of TOPS-10
or
@ISAM<KRET> for users of TOPS-20
*devl:indfil.ext[ppnl] ,dev2:datfil.ext=infil.ext[ppn2]/M<RET>

where:

devl, and dev2, are disk devices on which the files are stored.
If any of the devices is omitted, DSK is assumed.

indfil.ext is the name and extension of the new index file. If
the name 1is omitted, the name of the input file is assumed. If
the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the new data file. If
the name. is omitted, the name of the new index file is assumed.
If the extension is omitted, .IDA is assumed.

infil.ext is the name and extension of the index file of the old
indexed-sequential file. The name of the file must be specified,
but the extension can be omitted. No extension is assumed if the
extension is omitted.

[ppnl]l, [ppn2] specify directories for the new index file and the
old index file, respectively. If either 1is omitted, the
directory of the logged-in user is assumed. The new data file
must reside in the same directory as the new index file. Users
of TOPS-20 who wish to specify a directory other than the default
may run the TRANSLATE program to determine the <correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative which is
generally more useful, see Appendix E, Defining Logical Names
under TOPS-20.

/M is the switch indicating that the maintain option 1is being
requested. The switch must be specified.

If the output file specifications are not included in the command
string, the equal sign (=) can be omitted.

After the command string has been scanned, ISAM asks a series of
questions about values for the new indexed-sequential file. The mode
of the file, the record size, and the key cannot be changed. The
values from the o0ld file are given in parentheses with the question.
If you wish to change a value, enter the new value; if you do not
wish to change a value, press the RETURN key. All questions refer to
the output file.

COBOL~-74 UTILITY PROGRAMS

TOTAL RECORDS PER DATA BLOCK (n):

Specify the total number of records to be contained in each block of
the data file.

EMPTY RECORDS PER DATA BLOCK (n):

Give the number of data records that are to be initially left empty in
each data block.

TOTAL ENTRIES PER INDEX BLOCK (n):

Give the total number of index entries to be contained in each block
of the index file.

EMPTY ENTRIES PER INDEX BLOCK (n):

Specify the number of index entries that are to be initially left
empty in each index block.

PERCENTAGE OF DATA FILE TO LEAVE EMPTY (n):

Give, as a percentage of the total number of blocks, the number of
blocks to be initially left empty in the data file.

PERCENTAGE OF INDEX FILE TO LEAVE EMPTY (n):

Give, as a percentage of the total number of blocks, the number of
blocks to be initially left empty in the index file.

MAXIMUM NUMBER OF RECORD FILES CAN BECOME (n):

Specify the maximum number of records that can be contained in the
file. This number sets the upper limit on the size of the data file.
It is required because storage allocation tables must be set up when
the file is created.

Example - Maintaining an indexed-sequential file

.R ISAM<RET>

*test.idx, test.ida=test /m

total records per data block (2):

empty records per data block (1):

total entries per index block (3): 32

empty entries per index block (1l): 10

percentage of data file to leave empty (60): 50
percentage of index file to leave empty (10): 40
maximum number of records file can become (12000) 25000

COBOL-74 UTILITY PROGRAMS

7.1.3 Packing an Indexed-Sequential File

Packing an indexed-sequential file is the reverse of building one. An
indexed-sequential file is copied into a sequential file in the order
specified by the index. This option is used primarily to compact an
indexed-sequential file for backup storage, although the resulting
sequential file can be treated as any other sequential file. The
command string for the packing option of ISAM is as follows:

.R ISAM<RET> for users of TOPS-10
or
@ISAMCRET> for users of TOPS-20
*devl:seqfil.ext[ppnl]l=dev2:indfil.ext[ppn2] /P<RET>
where:

devl and dev2 are the devices on which the sequential file is to
be stored and the index file resides, respectively. The input
file must be on disk. If neither device is specified, DSK is
assumed.

segfil.ext is the name and extension of the output sequential
file. If the name is omitted, the name of the input file is
assumed. If the extension is omitted, .SEQ is assumed.

indfil.ext is the name and extension of the index file of the
indexed-sequential file. The name must be specified, but the
extension can be omitted. If the extension 1s omitted, no
extension is assumed.

[ppnl] [ppn2] are directories for the new sequential file and the
old index file, respectively. If either 1is omitted, the
directory of the logged-in user is assumed. Users of TOPS-20 who
wish to specify a directory other than the default may run the
TRANSLATE program to determine the correct project-programmer
number . (See the TOPS-20 User's Guide for information on how to
do this.) For an alternative which is generally more useful, see
Appendix E, Defining Logical Names under TOPS-20.

/P is the switch signifying that the packing option 1is being
requested. It must be included.

If the output file specification is omitted, the equal sign (=) can be
omitted.

After the command string has been processed, ISAM asks the following
guestions.

MODE OF THE OUTPUT FILE:
Specify SIXBIT (or S), ASCII (or A), F, V, or ST according to the mode
in which the sequential file is to be recorded. V is variable-length
EBCDIC, and F is fixed-length EBCDIC, and ST is STANDARD-ASCII.
RECORDS PER OUTPUT BLOCK:
Give the blocking factor that you want for the sequential file (i.e.,

the number of records per logical block). If the file is to be
unblocked, the user answers 0.

COBOL-74 UTILITY PROGRAMS

Example - Packing an indexed-sequential file

.R ISAM

*MTA2:TEST.SEQ=TEST.IDX /P

MODE OF THE OUTPUT FILE: SIXBIT
RECORDS PER OUTPUT BLOCK: 0

7.1.4 Ignoring Errors

When packing an indexed-sequential file into a sequential file, vyou
can include the /I switch in the command string to force ISAM to
ignore certain fatal errors. This switch causes ISAM to try to
recover as much data as possible from a damaged indexed-sequential
file.

Including the /I switch in the command string to ISAM causes the
program to make nonfatal those errors that concern duplicate keys or
keys out of order. The messages for these errors are preceded by a
percent sign (%) vrather than a question mark (?) so that ISAM will
continue the packing operation. The /I switch can be used only with
the /P switch. It cannot be used alone.

The command string when using the /I and /P switches is as follows:
.R ISAM<CRET> for users of TQOPS-10
or
@ISAM<RET> for users of TOPS-20
*devl:segfil.ext[ppnl]=dev2:indfil.ext [ppn2]/P/I<RET>
where:

devl and dev2 are the devices on which the sequential and index
files reside, respectively. The input file must be on disk. If
neither device is specified, DSK is assumed.

seqfil.ext is the name and extension of the output sequential
file. If the name 1is omitted, the name of the input file is
assumed. If the extension is omitted, .SEQ is assumed.

indfil.ext is the name and extension of the index file of the
indexed-sequential file. The name must be specified, but the
extension can be omitted. If the extension is omitted, no
extension is assumed.

[ppnl], {ppn2] are directories for the new sequential file and
the old index file, respectively. If either is omitted, the
directory of the logged-in user is assumed. Users of TOPS-20 who
wish to specify a directory other than the default may run the
TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20 User's Guide for information on how to
do this.) For an alternative which is generally more useful, see
Appendix E, Defining Logical Names under TOPS-20.

COBOL-74 UTILITY PROGRAMS

/P is the switch signifying that the packing option 1is being
requested. It must be included.

/1 is the switch signifying that some fatal errors are to be
ignored. It may be included only with the /P switch.

The equal sign (=) can be omitted 1if the output file
specification is omitted.

7.1.5 Reading and Writing Magnetic Tape Labels

When building or packing an indexed-sequential file, you can include
the /L switch to cause ISAM to read or write labels on magnetic tape.
The /L switch, when used with the /B switch, causes ISAM to read
COBOL-74 standard tape labels on the input magnetic tape. When used
with the /P switch, the /L switch causes ISAM to write standard tape
labels on the output magnetic tape. The /L switch can only be used on
magnetic tape files whose recording mode is not F or V,

The command string when using the /L switch with the /B switch is as
follows:

.R ISAMKRET> for users of TOPS-~10
or
@ISAM<RET> for users of TOPS~20
*devl:indfil.ext[ppn],dev2:datfil.ext=MTAn:seqfil.ext/B/L<KRET>
where:

devl, dev2, and MTAn are the devices for the index, data, and
input sequential file, Devl and dev2 must be disk devices. The
default disk for devl and dev2 is DSK.

indfil.ext is the name and extension of the index file. If the
filename is not specified, the name of the input file is assumed.
If the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the data file. If the
filename 1is omitted, the name of the index file is assumed. If
the extension is omitted, .IDA is assumed.

seqfil.ext is the name and extension of the input sequential
file. This filename must be specified, but the extension can be
omitted. If it is omitted, .SEQ is assumed.

[ppn] specifies the directory for the index file. If it |is
omitted, the directory of the logged-in user is assumed. The
data file must reside in the same directory as the index file.
Users of TOPS-20 who wish to specify a directory other than the
default may run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative which is
generally more useful, see Appendix E, Defining Logical Names
under TOPS-20.

/B is the switch signifying that ISAM will be used to build an
indexed-sequential file. If the switch is omitted from the
command string, /B is assumed.

COBOL-~74 UTILITY PROGRAMS

/L is the switch signifying that ISAM will read standard tape
labels. It must be included.

The equal sign (=) can be omitted if the file specifications for the
output files are also omitted.

The command string when using the /L switch with the /P switch 1is as
follows:

.R ISAM<KRET> for users of TOPS-10
or

@ISAMKRET> for users of TOPS-20
*MTAn:seqfil.ext=devl:indfil.ext[ppn]/P/L<RET>

where:
MTAn: and devl are the devices on which the sequential file is
to be stored and the index file resides, respectively. The input
file must be on disk. If the name of devl is not specified, DSK
is assumed.
seqfil.ext is the name and extension of the output sequential
file. The name and extension can both be omitted because
filenames are not used on magnetic tape.
indfil.ext is the name and extension of the index file of the
indexed-sequential file. The name must be specified, but the
extension can be omitted. If the extension is omitted, no
extension is assumed.
[ppn] is a directory for the old index file. If it is omitted,
the directory of the logged-in user is assumed. Users of TOPS-20
who wish to specify a directory other than the default may run
the TRANSLATE program to determine the correct project-programmer
number . (See the TOPS-20 User's Guide for information on how to
do this.) For an alternative which is generally more useful, see
Appendix E, Defining Logical Names under TOPS-20.

/P is the switch signifying that the packing option is being
requested. It must be included.

/L is the switch signifying that ISAM will write standard tape
labels. It must be included.

7.1.6 Indirect Commands

The ISAM program accepts command strings and dialogue responses from
indirect command files.

The command string to direct ISAM to read an indirect command file is:
.R ISAMKRET> for users of TOPS-10
or
@ISAM<RET> for users of TOPS-20

*@dev:cmdfil.ext [ppn] <RET>

COBOL~-74 UTILITY PROGRAMS

where:
@ indicates that this is an indirect command file.

dev is the device on which the command file is stored. 1If it is
omitted, DSK is assumed.

cmdfil.ext is the name and extension of the command file. The
name must be specified. If you omit the extension, .CMD is
assumed.

[ppn] is the directory in which the command file is stored. If

it is omitted, the directory of the logged-in user is assumed.
Users of TOPS-20 who wish to specify a directory other than the
default may run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative which is
generally more useful, see Appendix E, Defining Logical Names
under TOPS-20.

After ISAM reads the command string, it reads the command file and
performs the processing specified within it. The command file must
contain the complete command string and all dialogue responses for a
single 1ISAM operation exactly as they would be typed if you were
giving them directly to the ISAM program. Nothing else can be present
in the command file,

7.1.7 Using Indexed-Sequential Files

Indexed-sequential files can be read and written, and individual
records within them can be rewritten or deleted. You can perform any
actions on the records in an indexed-~sequential file by specifying the
desired record key in the RECORD KEY field. To use an
indexed-sequential file, the following statements are employed:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.,
SELECT ISAM-FILE ASSIGN TO DSK
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ISAM-RECORD-KEY.

> W N
* e e .

.

DATA DIVISION.
FILE SECTION.
FD ISAM~FILE
5. BLOCK CONTAINS 13 RECORDS
6. VALUE OF IDENTIFICATION IS "ISAMFLIDX".
01 ISAM-RECORD.
02 FILLER PIC X(12).
4. 02 ISAM-RECORD-KEY PIC X (3).
02 FILLER PIC X(75).

PROCEDURE DIVISION,
BEGIN.
OPEN INPUT-OUTPUT ISAM-FILE.

10.
11.

COBOL-74 UTILITY PROGRAMS

READ ISAM~-FILE, INVALID KEY GO TO ERRPROC.

WRITE ISAM-RECORD, INVALID KEY GO TO ERRPROC.

DELETE ISAM-RECORD, INVALID KEY GO TO ERRPROC.

.

REWRITE ISAM-RECORD, INVALID KEY GO TO ERRPROC.
READ ISAM~FILE NEXT RECORD, INVALID KEY GO TO ENDFILE.

The notes in the following list are keyed to the numbers to the left
of the lines in the preceding program.

10.

The indexed-sequential file must reside on disk.
The ORGANIZATION clause is required.

The ACCESS MODE clause is required if you wish to access the
file in random fashion, since the ACCESS MODE defaults to
sequential. When DYNAMIC is specified, as here, either
random or sequential access may take place.

The RECORD KEY clause is required in the Environment Division
and refers to the data-item designated as the record key
which appears in the Data Division within the FD area record
description for the indexed-sequential file.

An indexed-sequential file must be blocked.

The VALUE OF IDENTIFICATION clause is required. It
designates the filename and extension of the index file
rather than that of the data file. The name of the related
data file 1is stored within the index file. The VALUE OF
IDENTIFICATION must be specified because the name of the file
must be present at initialization time so that the buffer and
storage space can be allocated.

The READ statement reads the indexed-sequential file to find
the record whose key as written on the file matches the
record key. If no match is found, the INVALID KEY path is
taken.

The WRITE statement writes the record that has a key that
matches the record key. If the record whose key matches the
record key is already in the file, the INVALID KEY path is
taken.

The DELETE statement causes a search to be made of the file
to find the record whose key matches the record key. When
the record is found, it is deleted. If the record 1is not
found, the INVALID KEY path is taken.

The REWRITE statement causes searching of the file to find
the record whose key matches the record key. When the record
is found, it is replaced with the contents of the record
specified 1in the REWRITE statement. If the record is not
found in the file, the INVALID KEY path is taken.

7-14

COBOL-74 UTILITY PROGRAMS

11. This shows the method used to read an indexed-sequential file
sequentially. When the READ statement is executed, the
record accessed is the first record whose record key has a
value higher than the last record processed by a READ, WRITE,
REWRITE or DELETE statement. If the file has been opened but
no READ, WRITE, DELETE or REWRITE statement has been
executed, the first record of the file is read.

7.2 LIBARY - SOURCE LIBRARY MAINTENANCE PROGRAM

LIBARY provides a facility for creating or maintaining COBOL library
files on disk or DECtape (TOPS-10 only). Library files contain COBOL
source-language text organized into statement groups. Specifically,
the LIBARY program has the capability of adding source-language text
to the library file, replacing and/or deleting lines or whole
statement groups, and providing a listing of the file. It allows you
to specify those data descriptions or procedures used in many programs
and to place them in a common file for use by the COBOL compiler. The
statement groups in the library file are included in a COBOL program
through the wuse of the COPY verb. (See Part 2, Section 1.4, for
information on the COPY verb.)

7.2.1 Library File Format

A library file is a collection of COBOL source-language statement
groups, each identified by a unique 1- to 8-character library-name.
The library file must be on a directory device. Each statement group
is a set of ordinary COBOL language statements conforming to the use
of the COPY verb. The statement groups are kept in alphabetic order
according to their 1library names. The maximum number of statement
groups that can appear in a library is 3869.

The library file is in a binary format that is recognizable only by
LIBARY and the COBOL compiler. You, however, need not concern
yourself with the format of the actual entries in the file. You enter

them as ASCII text; LIBARY stores them in the appropriate format
automatically.

7.2.2 Invoking The Library Utility
To invoke the library utility program, enter R LIBARY in response to
the TOPS-10 prompt (.) or LIBARY in response to the TOPS-20 prompt
(@). That is,

.R LIBARY<RET> for users of TOPS-10

or

@LIBARY<RET> for users of TOPS-20

COBOL-74 UTILITY PROGRAMS

When LIBARY is ready to process commands, it issues an asterisk
prompting character and waits for you to enter a file specification
command line. The file specification command 1line identifies the
library files being either created or used as input. It also
identifies the listing file if a listing is required. Enter the file
specification command line according to the following format:

*output-library,listing=input-library<RET>
where:

output-library - is the file specification for the library file
being generated.

listing - is the file specification for the file that is
to receive the output listing.

input-library - is the file specification for the library file
being used as input.

Each file specification has the following format:
dev:filename.ext[ppn]/sw
where:

dev: - is the logical device name for the unit on which
the desired file 1is mounted. The default
assignment is DSK:.

filename - is the name of the file consisting of from one
to six SIXBIT characters. Filename must be
specified for at least one library file.

.ext - is the filename extension consisting of a period
followed by zero to three characters. It is
used to indicate the type of information in the
file.

[ppn] - is the directory area in which the file is
stored. The directory specification, enclosed
in brackets, contains the project-programmer
number of the file's owner. Users of TOPS-20
who wish to specify a directory other than the
default = may run the TRANSLATE program to
determine the correct project-programmer number.
(See the TOPS-20 User's Guide for information on
how to do this.) For an alternative which is
generally more useful, see Appendix E, Defining
Logical Names under TOPS-20.

/Sw - is one ASCII character preceded by a slash
specifying a LIBARY switch option. (See Section
7.2.4, LIBARY Switches.)

After you have invoked LIBARY and given it a file specification
command line, it automatically creates a scratch file to contain the
output file generated by the LIBARY run. When you are through working
on your library file and enter the END command (See Section 7.2.6.4,
LIBARY Directing Commands), LIBARY renames the scratch file with the
proper output name (after any necessary renaming of the input file).

COBOL~74 UTILITY PROGRAMS

If an error occurs causing the execution of LIBARY to be aborted, the
input file, if specified, will be unchanged and the scratch file will
be deleted. If the error occurred after the input file has been
renamed, the original input file has an extension of .BAK.

7.2.3 Command String Defaults

The following default values are assumed by LIBARY if any part of any
file specification is omitted.

1. If any device is not specified, DSK is assumed.

2. If the file specification for the listing file is omitted, no
listing will be produced.

3. If the name of the listing file is omitted, the name of the
input file is assumed.

4, If the extension of the listing file 1is omitted, .LST is
assumed.

5. If the file specification for the output file is omitted, it
is assumed that there is no output file to be produced.

NOTE

If you are omitting the output file because you want
to run LIBARY to obtain a listing only, the listing
file specification, the input file specification, and
the /L switch must be specified.

6. If the name of the output file is omitted, the name of the
input file is assumed.

7. If the extension of the output file 1is omitted, .LIB is
assumed.

8. If the file specification of the input file is omitted, it is
assumed that there is no input file and that a library is
being created. Thus, only commands for insertion can be
used.

9. The filename ¥or the input file cannot be omitted if the file
specification is present.

10. If the extension of the input file is omitted, .LIB is
assumed.

11. If any project-programmer number is omitted, it is assumed to
be that of the logged-in user. Users of TOPS-20 who wish to
specify a directory other than the default may run the
TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20 User's Guide for information on how
to do this.) For an alternative which is generally more
useful, see Appendix E, Defining Logical Names under TOPS-20.

12. If the 1input and output files have the same name and
extension, and are both on disk, the extension of the input
file is changed to .BAK at the completion of the operation.

COBOL-74 UTILITY PROGRAMS

7.2.4 LIBARY Switches

The following switches can be included in the command string to
LIBARY.

/D - List on the user terminal all of the library-names contained
on the input library file.

/H - List on the user terminal all of the commands available with
LIBARY.

/L - Create only a listing file of the entire input library. The
output file specification must be omitted.

/S - Put the input statement group into conventional format.
/W - Rewind (for magnetic tape only).

/2 - Clear an output directory (for DECtape only).

7.2.5 Running LIBARY

Running LIBARY consists of specifying commands in response to the
LIBARY asterisk prompting character (*). Each command causes LIBARY
to move forward in the file. Because LIBARY cannot move backward in
the file, you should plan your interaction with LIBARY so that you
create or modify your files in alphabetical order by statement group.
This will keep you from having to restart LIBARY and reprocess your
file.

LIBARY is organized so that you can optionally <c¢reate new library
files, 1insert or delete statement groups into an existing file, or
make line-by-line changes to an existing file. It has, therefore, two
major modes of operation: group mode or edit mode. Group mode
provides a means of inserting, replacing, extracting, and deleting
entire statement groups; edit mode provides a means of inserting new
lines or deleting or modifying existing ones.

NOTE

Edit mode in LIBARY acts as a text
editor for the library. However, this
editor is not as powerful or as useful
as the text editors provided with the
operating system (such as TECO and
EDIT) . LIBARY edit mode is there for
historical reasons and its wuse 1s not
recommended.

7.2.6

The £
LIBAR

These
abbre

7.2.6
inser

group

COBOL-74 UTILITY PROGRAMS

LIBARY Commands

ollowing sections describe the commands available with LIBARY.
Y commands are divided into three classes of commands:

e Group mode (See Section 7.2.6.1)

e Edit mode (See Section 7.2.6.2)

e LIBARY-directing (See Section 7.2.6.4)

commands may be abbreviated as 1long as you supply a unique
viation.

.1 Group Mode Commands - Group mode commands allow you to
t, replace, extract, and delete entire statement groups. The

mode commands are:

NOTE

For the remainder of this chapter, the
words "line number" refer to the line
numbers generated by a system standard
editor; the words "COBOL line number"
refer to the conventional 1line numbers
as described in Part 2, Section 1.3,
Source Program Format.

DELETE, library-name

Delete the statement group identified by 1library-name from the
library file. The library-name itself is also deleted. LIBARY
moves forward through the input library file. It copies each
statement it finds onto the output file until it encounters the
library entry specified by library-name. When library-name 1is
reached, LIBARY positions itself at the next sequential library
entry and waits for another command.

EXTRACT, library-name, file-specification

Extract the complete library entry specified by library-name from
the input 1library file and generate a new file named file-name.
LIBARY searches the input library file for the library entry
specified by 1library-name. When library-name is found, it
creates a file or overwrites an existing file with the attributes
specified by file-name and copies the library entry onto it. The
input library file remains unchanged.

INSERT, library-name, file-specification

Insert the statement group contained on the file specified by
file-name into the output library file. The statement group is
inserted alphabetically according to the name specified by
library-name. The file specified by file-name must be an ASCII
file. LIBARY assumes that the entire file is to be inserted
under library-name. If you want to insert many entries, you must
create a separate file for each and execute a separate INSERT
command for each. If there are line numbers in the file, they
are included when the file is merged. If there are no line
numbers, LIBARY generates them starting with 10 and incrementing

COBOL-74 UTILITY PROGRAMS

by 10. If the library entry being inserted contains COBOL line
numbers, the /S switch must be specified. (See Section 7.2.4,
LIBARY Switches.)

REPLACE, library-name, file-specification

Replace the library entry identified by 1library-name with the
statement group contained on the file specified by file-name.
The file specified by file-name must be an ASCII file. LIBARY
assumes that the entire file 1is to replace the statements
currently associated with library-name. If you want to replace
many library entries, you must create a separate file for each,
and execute a separate REPLACE command for each. If there are
line numbers in the file, they are included. 1If there are no
line numbers, LIBARY generates them starting with 10 and
incrementing by 10. The /S switch must be specified for files
having COBOL line numbers. (See Section 7.2.4, LIBARY Switches.)

7.2.6.2 Edit Mode Commands - Edit mode commands allow you to create a
library file or modify an existing one with line-by-line edits from
your terminal. To edit your file, you must first specify one of the
following commands to enter edit mode; after which, you can enter an
appropriate edit command to affect the actual editing you wish to
perform:

CORRECT, library-name

Positions LIBARY to the group of statements specified by
library-name and enters edit mode. Any of the commands described
in Section 7.2.6.3, Edit Commands, can be entered at this time.
If the /N switch is specified, LIBARY puts new line numbers on
the output (corrected) statements. (See Section 7.2.4, LIBARY
Switches.)

INSERT, library-name

Positions LIBARY at the place in the 1library file that the
specified 1library-name will be inserted. It then enters edit
mode and waits for you to enter statements that will compose the
module. The I command, described in Section 7.2.6.3, is used for
this purpose.

REPLACE, library-name

Positions LIBARY at the statement group specified by library-name
and deletes it. It then enters edit mode and waits for you to
insert source lines by means of the I command. (See Section
7.2.6.3, Edit Commands.)

7.2.6.3 Edit Commands - The commands given in this section allow you
to insert, delete, and replace individual source lines in a statement
group. Source lines should be edited 1in numeric order within a
statement group because LIBARY can only move forward in the file. The
following edit commands are provided:

Dnnnnnn
Delete the line specified by nnnnnn. The 1line number can be
entered without 1leading zeros. That is, you need not enter six
characters unless there are that many characters actually in the
line number.

7-20

COBOL-74 UTILITY PROGRAMS

Innnnnn COBOL statement

Insert the COBOL statement into the statement group according to
the 1line number specified by nnnnnn. The line number can be
entered without leading zeros. A space or tab must be included
between the line number and the COBOL statement; the space will
not be included in the statement, but the tab will.

Rnnnnnn COBOL-statement

Replace the source line identified by nnnnnn with the specified
COBOL-statement. The line number can be entered without leading
zeros. A space or tab must be included between the 1line number
and the statement; the space will not be included in the
statement, but the tab will.

7.2.6.4 LIBARY-Directing Commands - LIBARY-directing commands allow
you to end or restart library processing. The LIBARY-directing
commands are:

END

Copy any remaining statement groups from the input to the output
file, close both the input and output files, and rename the input
file with the extension .BAK, if necessary.

RESTART

Copy any remaining statement groups from the input to the output
files, close both the input and output files, rename the input
file with the extension .BAK, and reopen the output file as the
new input. Any changes made prior to issuing the RESTART command
are in the new input file.

NOTE

LIBARY maintains source modules in
ascending order. Line numbers within
modules are also in ascending order. 1If
you want to go back in processing to a
line previously passed, use the RESTART
command.

7.2.6.5 Example of Command Usage - A library on disk contains the
routines PAYCOMP, FIND-MP, and MP-DESCR. This example shows you how
to do the following:

1. 1Insert a new routine called JOB-DESC

2. Correct MP-DESCR

3. Delete PAYCOMP
These tasks must be undertaken in this order because LIBARY deals with
code units in alphabetic order only. The MP-DESCR routine contains
the following source statements:

000010 LABEL RECORDS ARE OMITTED

000020 DATA RECORD IS MP-RECORD.

7-21

COBOL-74 UTILITY PROGRAMS

The dialogue at the terminal might appear as follows:

.R LIBARY

*LIBARY.NEW=LIBARY.OLD

*INSERT JOB-DESC

*I10 LABEL RECORDS ARE STANDARD;
*120 VALUE OF ID IS "JOBS DAT";
*I30 DATA RECORD IS JOB-RECORD.
*CORRECT MP-DESCR/N

*15 BLOCK CONTAINS 5 RECORDS
*DELETE PAYCOMP

*END

The file LIBARY.NEW now contains the following:
1. FIND-MP
2. JOB-DESC
3. MP-DESCR, altered to appear as follows:
000010 BLOCK CONTAINS 5 RECORDS

000020 LABEL RECORDS ARE OMITTED
000030 DATA RECORD IS MP-RECORD.

To insert one or more files in a library, you can issue the following

commands to LIBARY.

.R LIBARY
*ALIB,ALIB=
*INSERT AFIL,AFIL
*INSERT BFIL,BFIL
*END

*°C

The file ALIB.LIB contains two statement groups (AFIL
the file ALIB.LST contains the following information.

AFIL COBOL LIBRARY 01-DEC-78
000010 DISPLAY "A".
BFIL COBOL LIBRARY 01-DEC-78
000010 DISPLAY "B".

7.3 COBDDT - PROGRAM FOR DEBUGGING COBOL PROGRAMS

and

BFIL) and

09:52

09:52

COBDDT is an interactive program that is used to debug COBOL programs

at run-time. With COBDDT, you can:
1. Change the contents of a data-name

2. Set up to 20 breakpoints in a program

3. Continue from a breakpoint to any other breakpoint

4. Display the contents of a data-name

COBOL-74 UTILITY PROGRAMS

5. Trace paragraphs and sections

6. Obtain a histogram of paragraphs executed to show program
behavior

7. Interrupt a running program

7.3.1 Loading and Starting COBDDT

To run COBDDT, you must first compile the source program. You then
load and start the compiled program with COBDDT.

NOTE

Using the /P switch with the COMPILE
command suppresses the user symbols that
are used by COBDDT. Therefore, you must
not use the /P switch when compiling
your program, if you wish to use COBDDT.

You can load the compiled source program with either the monitor
command LOAD or direct commands to LINK. In both cases, LINK loads
the user symbols along with the program.

After loading the compiled source program, Yyou issue the monitor
command START to start the program. You can also issue the monitor
command DEBUG to load and start COBDDT with your COBOL program. If
you use the DEBUG command, you can specify the file to be debugged by
any of the following: the name of the source file, the name of the
binary relocatable file, or merely the name of the file without the
extension. However, if the extension of the source file is something
other than .CBL, you must use the /COBOL switch with the DEBUG
command. Otherwise the file is not recognized as a COBOL file. When
you load COBDDT with the user program, only COBDDT is started; the
program itself is not started.

The three methods of loading and starting are shown below. Although
all system prompts shown are for TOPS-10, you can use the same syntax
on TOPS-20. If you are using TOPS-20, you do not have to specify the
/"LOCALS" switch, as TOPS-20 loads local symbols by default.

1. .LOAD $"LOCALS" file spec, SYS:COBDDT
.START

2. .DEBUG file spec [/COBOL]

3. .R LINK
* /LOCALS file spec, SYS:COBDDT /GO
. START

When the program is started with the START command, COBDDT is entered.
This is shown by the message:

STARTING COBOL DDT
*

Version 12A 7-23 January 1980

COBOL-74 UTILITY PROGRAMS

You can now issue any COBDDT command (described below). If vyou want
to run your program at this time, enter the PROCEED command. This
will cause your program to run to completion or until a fatal error is
encountered. If an error 1is encountered that would normally cause
abortion of execution, COBDDT is entered automatically and the
message:

?ENTERING COBDDT from: <{paragraph-name>

gives the name of the paragraph in which the error occurred. COBDDT
can then be used to check data values at the time of the failure. The
program cannot proceed after COBDDT has been entered due to an error.

If the COBOL program is in a loop and is not reaching a breakpoint,
you can enter COBDDT by typing CTRL/C two times followed by typing the
REENTER command. For example:

“cTc
REENTER

This will cause COBDDT to display the following message:
Do you want to enter COBDDT (Y or N)

If you enter Y, the execution of the object program is resumed where
it was interrupted and COBDDT is entered at the next TRACE entry in
the program. If you enter N, however, your COBOL program will be
reentered at its original address.

7.3.2 COBDDT Commands

The commands to COBDDT are described below. Other than for the STOP
command, you need only type the first letter of each command for
COBDDT to recognize the command. For the STOP command, however, vyou
must type the entire command. Data-names and section-names need not
be typed in full as long as each name or portion of the name is unique
in the program. Paragraph-names may be qualified by section-names,
and data-names may be qualified by higher-level data-names or
subscript values or both. The subscripts for a qualified data-name
must appear immediately after the first data-name. Subscripts must be
numeric integers. Section-names and data-names cannot be qualified by
program-names because COBDDT uses the names in the program specified
in the MODULE command.

ACCEPT
The ACCEPT command allows you to change the contents of a data
item. The new contents of the data item are typed on the next
line. The ACCEPT command has the format:

ACCEPT
ACCEPT data-name

If the data-name is not specified, the last name specified in a
DISPLAY or another ACCEPT command is assumed.

Version 12A 7-24 January 1980

BREAK

CLEAR

Versi

COBOL~-74 UTILITY PROGRAMS

Example:

*ACCEPT VARI1
16.25

*

The BREAK command sets a breakpoint (or pause) at the beginning
of the specified paragraph or section name. The BREAK command
has the format:

BREAK paragraph-name
BREAK section-name

Up to 20 breakpoints can be set in a program. Breakpoints cannot
be set in the high segment of a reentrant program on TOPS-10.

Breakpoints can be set in nonresident COBOL segments, whether or
not the segment is in memory. If more than one module is in
memory, the name of the module in which the break occurred is
typed with the paragraph and section names.

You can set breakpoints in LINK overlays, but all breaks in the
overlay are cleared when the overlay is overlaid or cancelled.
To set breakpoints in LINK overlays, you must use the OVERLAY
command to specify OVERLAY ON. If you do not specify the OVERLAY
ON command, the program executes through the overlay before you

can set a breakpoint. This 1is because you cannot set a
breakpoint in an overlay unless the overlay is in memory.

Example:

*BREAK PAR1

*

The CLEAR command removes the breakpoint at a specified
paragraph. The CLEAR command has the format:

CLEAR paragraph-name
CLEAR

If the paragraph-name is not specified, all breakpoints that have
been set in the program are removed.

Example:

*CLEAR PARI1

*

on 12A 7-25 January 1980

COBOL-74 UTILITY PROGRAMS

DDT

The DDT COBDDT command causes an entry to be made to DDT, the
assembly language debugger. COBDDT can supply only certain types
of data; the use of the DDT COBDDT command enables you to 1look
at the data areas or procedure areas of the object program. This
allows you to change the compiled code or to put breakpoints in
the middle of a paragraph. If COBDDT or LIBOL have been linked
with symbols, you can use the DDT COBDDT command to look at these
as well. To use the assembly language debugger, you must first
use the LOCATE command or an assembly listing to obtain the
addresses of the areas that you want to look at. Once you have
these addresses, you can use the DDT COBDDT command to look at
these areas. The DDT COBDDT command has the format:

DDT
COBDDT responds to the DDT command by telling you how to exit
from the assembly language debugger back to COBDDT. To get back
to COBDDT from the assembly language debugger, you use the POPJ
17, X statement.
The DDT COBDDT command does not cause the assembly languaqe
debugger to be loaded, therefore you must load the assembly
language debugger before you begin the debugging session.
This example shows the use of the DDT COBDDT command on TOPS-10.
Although the system prompt differs on TOPS-20, the use of the
command is the same on both systems.
Example:

.GET PRGRM

.DDT

DDT

$G

STARTING COBOL DDT

*DDT

[Return from DDT by typing "POPJ 17, X]

DDT

DISPLAY

The DISPLAY command causes the contents of a data item to be
displayed on the wuser's terminal. The DISPLAY command has the
format:

DISPLAY
DISPLAY data-name

If no data-name is specified, COBDDT uses the last data-name
specified in an ACCEPT or DISPLAY command.

Version 12A 7-26 January 1980

COBOL~-74 UTILITY PROGRAMS

Example:

*DISPLAY ALPHA
0

*

GO

The GO command causes the program to resume execution of the
specified procedure name. The GO command has the format:

GO procedure-name
The procedure name must be in a module that is currently loaded
into core. Execution of the program begins at the designated
procedure name immediately after the command is typed.
The procedure name that you specify can be in another module, if
that module is in memory. However, the GO command does not set
up a return for the EXIT PROGRAM statement, nor does it provide
addresses for LINKAGE SECTION items.
The GO command also does not alter the existing stack of PERFORM
exits or subprogram exits. If an error is detected in using
these return mechanisms following the GO command, control is
returned to COBDDT, but the PROCEED and GO commands are disabled.
Therefore further execution of the object program is not
possible.
Example:

*GO PARAl

BREAK AT <<PARA4>>

*

LOCATE

The LOCATE command causes the object-time address of a procedure
name or a data item to be typed. The LOCATE command has the
format:

LOCATE procedure-name

LOCATE data-item

If the specified data-item does not start on a word boundary 1in
memory, the bit displacement of the data-item is also displayed.

Example:

*LLOCATE PARAl
401057

*

Version 12A 7-26.1 January 1980

COBOL-74 UTILITY PROGRAMS

MODULE

NEXT

The MODULE command causes COBDDT to 1look for data names and
procedure names in the specified program. The MODULE command has
the format:

MODULE [program-name]

If the name is omitted, COBDDT types the name of the current
module followed by the names of all modules currently in memory.

Normally, within a run unit containing more than one program,
COBDDT searches for data names and procedure names in the current
program. The MODULE command changes the program in which the
search will take place. All subsequent searches for data names
and procedure names will be within the specified program until
another MODULE command is issued. If the current module is
cancelled or overlaid, the main program becomes the current
module.

Example:
*MODULE

CURRENT MODULE: MYPROG

*

The NEXT command causes the contents of a data item to be
displayed on the wuser's terminal. The NEXT command uses the
variable name and the subscript values given for the last ACCEPT,
DISPLAY, or NEXT command and adds the numeric value of the signed
integer to the rightmost subscript value in the subscript 1list.
The NEXT command has the format:

NEXT
NEXT signed integer

If the signed integer is omitted, a default of +1 is used. A
signed integer can be any integer with plus, minus, or no leading
sign. If you specify a subscript that is out of range, an error
message is displayed.

Example:
*NEXT 3
33
*
OVERLAY

The OVERLAY command either causes a break when an overlay is
entered or clears the breakpoint. The OVERLAY command has the
format:

OVERLAY ON
OVERLAY OFF

Version 12A 7-26.2 January 1980

COBOL-74 UTILITY PROGRAMS

OVERLAY ON causes COBDDT to break the first time that a LINK
overlay is entered each time it is brought into memory. The
break only occurs once for each time the overlay is brought into
memory. COBDDT types the following message when the break
occurs:

BREAK UPON ENTRY TO name

where name is the name of the entry point. Following the
message, COBDDT types the name of the current module and a list
of the modules currently in memory.

OVERLAY OFF causes COBDDT not to break when a LINK overlay is
entered and not to type the information described above. OVERLAY
OFF is the initial default.

PROCEED

STEP

The PROCEED command causes the program either